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Profesor Gúıa: Dr. Roberto Lineros R.

Antofagasta, Chile.
Diciembre, 2025





Agradecimientos

En este apartado, quiero agradecer profundamente a mi familia más cercana, mi mamá,
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3.3.1. Términos de masa para neutrinos. . . . . . . . . . . . . . . . . . . . . 24
3.3.2. Mecanismo de Seesaw tipo I . . . . . . . . . . . . . . . . . . . . . . . 26



3.3.3. Mecanismo See-saw inverso mı́nimo . . . . . . . . . . . . . . . . . . . 26

4. El modelo seesaw inverso con ruptura espontánea de la simetŕıa U(1) leptóni-
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Resumen

El modelo estándar (ME) presenta un marco teórico suficiente para poder entender la
mayoŕıa de la f́ısica de part́ıculas, sin embargo, el ME tiene ciertas falencias, no explica como
los neutrinos adquieren masa ni explica el origen de la materia oscura.

Por ello, existen modelos más allá del ME que buscan responder estas preguntas. En
este trabajo, se estudia un modelo tipo Seesaw inverso (SI) con ruptura espontánea de una
simetŕıa leptónica global U(1)ℓ, cuyo propósito es generar de manera natural términos de
masa para un neutrino activo del ME.

En este modelo se introducen en total 4 nuevas part́ıculas al ME: dos neutrinos estériles
con quiralidad derecha N1, N2, y dos escalares S, X singletes de SU(2)L con carga leptónica
y sin hipercarga, encargados de generar términos de masa luego del rompimiento espontáneo
de la simetŕıa U(1)ℓ. La introducción de los dos escalares al ME, modifica su potencial escalar,
introduciendo distintos parámetros de interacción λij y λi, que determinan la estructura que
tendrán los autoestados de masa de los escalares y la aparición de un pseudo-escalar, el cual
se evalúa como candidato a materia oscura.

A partir del lagrangiano del modelo, se construyen matrices de masa para los escalares
y los neutrinos, las cuales se diagonalizan mediante los software de Mathematica y VScode
en lenguaje Python, con el fin de obtener expresiones para los autoestados de masa, los
cuales están sujetos a restricciones f́ısicas tales como: la jerarqúıa de masa del modelo SI, la
estabilidad del potencial, respetar el valor de la masa del Higgs, respetar valores plausibles de
los Yukawas y los valores de expectación del vaćıo (VEVs).

Con ello, al muestrear un total de 106 puntos aleatorios que cumplan con las diversas
restricciones, es posible acceder a diferentes espacios de parámetros que ilustran gráficamente
las correlaciones que existen entre las variables.

Los resultados nos permiten identificar patrones y correlaciones entre las masas escalares,
los acoplamientos y los VEVS, revelando figuras bien definidas donde el modelo reproduce
una masa de neutrino compatible con las observaciones y un pseudo-escalar ligero candidato
a materia oscura.

El análisis de los resultados ratifica la consistencia interna del modelo, además de confirmar
su eficacia como una extensión mı́nima del ME capaz de explicar la masa de un neutrino
mediante ruptura espontánea de la simetŕıa.
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Caṕıtulo 1

Introducción

1.1. Motivación

El ME de la f́ısica de part́ıculas constituye un marco teórico exitoso para describir las
interacciones fundamentales y las part́ıculas elementales conocidas, su estructura basada en
el grupo SU(3)C × SU(2)L × U(1)Y permite explicar fenómenos electromagnéticos, débiles,
fuertes, tanto como la generación de masa de distintas part́ıculas, y a su vez, la predicción de
part́ıculas recientemente descubiertas experimentalmente, como el bosón de Higgs [1].

Sin embargo, el ME presenta limitaciones importantes:

Masa de neutrinos: El ME, no tiene incorporado un mecanismo por el cual, los neutrinos
adquieran masa, dejando a estas part́ıculas como componentes no masivos, esto a pesar
de que distintas experimentaciones realizadas en el SNO (Sudbury Neutrino Observatory)
[2] o el super Kamiokande [3], muestran de manera ineqúıvoca que mediante el mecanismo
de oscilación de sabor, los neutrinos śı tienen masa.

Materia oscura: El ME, no tiene incorporado ningún tipo de part́ıcula que permita
explicar la materia oscura. Esto a pesar de que constituye aproximadamente un 85% de
la materia del universo [4].

Por lo tanto, es necesario realizar una extensión al ME con el fin de resolver estas limitaciones.
Una de las extensiones más estudiadas para dar masa a los neutrinos es el mecanismo tipo

Seesaw, con sus distintas variantes [5]. Estos modelos consisten en la adición de neutrinos con
quiralidad diestra y singletes del ME que se acoplen a los neutrinos activos, generando aśı sus
términos de masa.

Sin embargo, algunos de estos mecanismos Seesaw presentan una refutabilidad desafiante
desde el punto de vista experimental y/o requieren escalas de enerǵıa muy altas como ocurre en
el Seesaw tipo 1. Por ello, una alternativa viable puede ser el mecanismo de seesaw inverso (SI),
el cual permite generar términos de masas pequeños para neutrinos activos sin la necesidad de
postular neutrinos excesivamente pesados al modelo. No obstante, el SI solo permite introducir
términos de masa los cuales carecen de un origen dinámico.

Una forma de justificar la aparición de estos términos de masa consiste en considerar la
simetŕıa global de número leptónico U(1)ℓ como una simetŕıa fundamental del lagrangiano
del ME, la cual, al romperse espontáneamente mediante la introducción de nuevos campos
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escalares que adquieren valores de expectación del vaćıo distintos a cero, generan naturalmente
términos de masa para los neutrinos del ME.

Esta alternativa resulta ser satisfactoria si consideramos además que, tras la ruptura
espontánea de la simetŕıa, se generan dos pseudo-escalares, de los cuales uno adquiere masa
de manera natural, y podŕıa ser un candidato a materia oscura.

Por lo tanto, la construcción de este tipo de modelo responde dos problemáticas que el
ME por śı solo no puede resolver.

En este contexto, el presente trabajo estudia un modelo Seesaw inverso con ruptura
espontánea de la simetŕıa leptónica global U(1)ℓ, el cual introduce dos neutrinos estériles
diestros N1,N2 y dos campos escalares singletes S, X que actúan como singletes dentro del
grupo de gauge que describe el ME.

1.2. Hipótesis

En este trabajo se propone que las masas de los neutrinos pueden generarse mediante un
mecanismo SI, si la simetŕıa U(1)ℓ accidental, se toma como una simetŕıa fundamental que
debe respetarse dentro del ME. De tal forma que, al romperse espontáneamente mediante
valores de expectación del vaćıo distintos de cero, para los dos escalares singletes, permita de
manera natural introducir términos de masa para al menos un neutrino activo del ME.

Además, el pseudo-escalar asociado a tal ruptura, podŕıa considerarse como un candidato
viable a materia oscura, si imponemos condiciones restrictivas para su masa y sus acoplamientos
λi y λij [6].

1.3. Objetivos del trabajo

Objetivo general

Analizar el modelo SI con ruptura espontánea de la simetŕıa Uℓ, determinando valores
plausibles para las jerarqúıas de masas asociadas al modelo SI y expresiones para los auto-
estados de masa de los escalares y el pseudo-escalar, como funciones de sus parámetros de
interacción λi.

1.3.1. Objetivos espećıficos

Construir el lagrangiano del modelo, al incorporar los neutrinos diestros y los campos
escalares S y X con una asignación de carga leptónica para respetar la simetŕıa U(1)ℓ.

Construir el potencial escalar del modelo, introduciendo por consecuencia, varios paráme-
tros de interacción entre los nuevos campos y el Higgs del ME.

Diagonalizar las matrices del sector escalar, con el fin de identificar autoestados de masa
f́ısicos y analizar sus dependencias paramétricas.

Construir y analizar espacios de parámetros correspondientes a: los autoestados de masa
del modelo SI, los acoplamientos de Yukawa relacionados al modelo SI, los valores de
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expectación del vaćıo de los dos campos escalares S y X, los acoplamientos λi y λij , los
autoestados de masa de los escalares y el pseudo-escalar resultante.

1.4. Estructura de la tesina

Este trabajo se organiza mediante cinco caṕıtulos. El primer caṕıtulo consta de la intro-
ducción del trabajo, se presenta la motivación de la investigación, la hipótesis general del
trabajo, el objetivo general y los objetivos espećıficos de la tesina y finalmente la estructura
de la misma.

El segundo caṕıtulo llamado Modelo Estándar, se presentan conceptos fundamentales
relacionados a la f́ısica de part́ıculas con el fin de establecer las bases que constituyen al ME
como tal, para finalmente explicar en que consiste el ME e introducir su lagrangiano.

El tercer caṕıtulo llamado Neutrinos, se revisa la historia del neutrino y el fenómeno de
oscilación de neutrinos como prueba ineqúıvoca de que los neutrinos tienen masa.

En cuarto caṕıtulo llamado modelo Seesaw Inverso con ruptura espontánea de U(1)ℓ, se
construye el lagrangiano del modelo, se analiza el sector escalar, se diagonalizan las matrices
de masa para el sector escalar y además, se exploran numéricamente patrones y relaciones
entre masas, acoplamientos, VEVS.

En el quinto y último caṕıtulo, se presentan las conclusiones principales del trabajo y se
comentan posibles ĺıneas futuras de investigación.

Finalmente, el documento incluye una sección de bibliograf́ıa, donde se listan las referencias
utilizadas en el trabajo, y un Anexo, en el cual se proporcionan expresiones auxiliares, cálculos
complementarios y material adicional necesario para comprender el modelo.
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Caṕıtulo 2

Modelo Estándar

El modelo estándar es una teoŕıa cuántica de campos que describe las part́ıculas funda-
mentales que constituyen la materia y las interacciones que actúan sobre ellas. Una teoŕıa
cuántica de campos contiene un marco teórico que combina principios de la mecánica cuántica
con principios de la relatividad especial, añadiendo el concepto de campo. Las part́ıculas se
consideran como excitaciones cuánticas de campos (espinoriales, escalares, vectoriales); por lo
tanto una teoŕıa cuántica de campos considera a los campos como elementos fundamentales
que impregnan el espacio tiempo y evolucionan en este [7].

En la naturaleza, hay dos tipos de part́ıculas fundamentales, clasificadas según el valor de su
esṕın, los fermiones y los bosones. Cada una tiene un comportamiento dinámico caracteŕıstico,
debido a las propiedades del campo que las describen.

2.1. Fermiones

Un tipo de part́ıcula fundamental es el fermión; se caracteriza por cumplir con el principio
de exclusión de Pauli y por lo tanto, obedecer la estad́ıstica de Fermi-Dirac además de contar
con esṕın semi-entero [8].

Para el caso de part́ıculas con esṕın 1/2, la dinámica se rige por la ecuación de Dirac, que
es una ecuación la que hace compatible la descripción cuántica de una part́ıcula con esṕın,
junto con la relatividad especial de Einstein. La ecuación de Dirac viene dada por:

(iγµ∂µ −m)ψ = 0 (2.1)

Donde m es la masa de la part́ıcula; ∂µ es el operador derivada parcial, definido como
∂µ = ∂/∂xµ; ψ es un campo espinorial de cuatro componentes (espinor); µ = 0, 1, 2, 3 es el
ı́ndice asociado a la métrica de Minkowski; y γµ corresponde a las matrices de Dirac que
satisfacen el álgebra de Clifford {γµ, γν} = 2ηµν . Una forma de describir al espinor es mediante
la representación quiral:

ψ =

(
ψL
ψR

)
(2.2)

Donde ψL corresponde a la componente quiral izquierda y ψR a la componente quiral
derecha. Cabe mencionar que, en el transcurso del documento se optará por utilizar la notación
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de unidades naturales, es decir, c = ℏ = 1. El término γµ, en la representación quiral/Weyl,
se expresan como:

γµ =

(
0 σµ

σ̄µ 0

)
, (2.3)

donde σµ son las matrices de Pauli,

σµ = (σ0, σ1, σ2, σ3) =

[(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)]
. (2.4)

También es conveniente mencionar la matriz γ5,

γ5 = γ0γ1γ2γ3 =

(
−I2×2 0
0 I2×2

)
, (2.5)

pues con esta matriz podemos definir los proyectores derechos e izquierdos,

PR =
I+ γ5

2
, PL =

I− γ5

2
, (2.6)

los cuales permiten descomponer un espinor en sus componentes de quiralidad izquierda y
derecha.

ψR = PRψ ψL = PLψ (2.7)

permitiendo representar un espinor en sus partes quirales,

ψ = ψR + ψL (2.8)

Es posible definir densidades lagrangianas asociadas a distintos tipos de campos, siempre
y cuando, sea posible reconstruir construir la ecuación de movimiento asociada al campo,
mediante el uso de la ecuación de Euler-lagrange:

∂µ

(
∂L

∂(∂µϕi)

)
=
∂L
∂ϕi

, (i = 1, 2, 3, . . .) (2.9)

donde L corresponde a la densidad lagrangiana; y ϕi corresponde a los campos del sistema.
Por lo tanto, se define el lagrangiano de Dirac:

L = i ψ̄γµ∂µψ −mψ̄ψ (2.10)

Donde tratamos ψ y ψ̄ = ψ†γ0 como campos independientes. Al aplicar la ecuación de Euler-
Lagrange 2.9 a cada uno de ellos, se obtienen las ecuaciones de movimiento correspondientes
a ψ y su adjunta ψ̄, de esta manera se recupera la ecuación de Dirac 2.1 [9].
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2.2. Bosones

Otro tipo de part́ıcula fundamental en la naturaleza son los bosones; se caracterizan por
no obedecer el principio de exclusión de Pauli y regirse por la estad́ıstica de Bose-Einstein y
además, cuentan con esṕın entero [10]. El caso más simple es el bosón cuyo esṕın es igual a
cero, el cual se denomina como bosón escalar, la dinámica de este tipo de part́ıcula se describe
mediante la ecuación de Klein-Gordon (KG),

(∂µ∂µ +m2)ϕ = 0 (2.11)

donde ϕ es un campo escalar con masa m. La ecuación de KG se obtiene al imponer que la
relación relativista de enerǵıa y momento se mantenga en el régimen cuántico [11]. Además, a
partir del lagrangiano de KG,

LKG =
1

2
(∂µϕ)(∂

µϕ)− 1

2
m2ϕ2 (2.12)

es posible recuperar la ecuación de movimiento 2.11, si se aplica la ecuación de Euler-Lagrange
2.9 al lagrangiano de KG 2.12.

El bosón cuyo esṕın es igual a uno se denomina bosón vectorial; la dinámica de este tipo
de part́ıcula se describe mediante la ecuación de Proca,

∂µF
µν +m2Aν = 0, con F µν = ∂µAν − ∂νAµ. (2.13)

donde Aµ es un campo vectorial con masa m. Al igual que en los casos anteriores, existe un
lagrangiano asociado a estos campos,

LProca = − 1

4
FµνF

µν +
1

2
m2AµA

µ, (2.14)

el cual, si lo insertamos en la ecuación de Euler-Lagrange 2.9, obtenemos su ecuación de
movimiento asociada; en este caso, la ecuación de Proca 2.13 [9].

2.3. Teoŕıa de grupos y simetŕıas

Una simetŕıa es una transformación que actúa sobre un sistema, dejándolo invariante.
Esto implica que, después de aplicar la transformación, todas las cantidades f́ısicas relevantes
permanecen indistinguibles de su configuración original. Gracias al teorema de Noether,
sabemos que cada simetŕıa (continua y diferenciable) de la naturaleza conlleva una ley de
conservación o al revés, que cada ley de conservación refleja una simetŕıa subyacente como
se ilustra en la tabla 2.1. Por ejemplo, las leyes de la f́ısica son simétricas con respecto
a traslaciones temporales, el teorema de Noether establece que esta invarianza implica la
conservación de enerǵıa, śı un sistema es invariante ante traslaciones espaciales, entonces el
momento lineal es conservado, si un sistema es simétrico ante rotaciones alrededor de un
punto, entonces el momento angular es conservado. De manera similar, la invarianza de las
leyes de Maxwell ante transformaciones de gauge, conlleva la conservación de carga eléctrica.
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Simetŕıa Ley de conservación
Traslación en el tiempo Enerǵıa
Traslación en el espacio Momento lineal
Rotación Momento angular
Transformación de gauge Carga

Tabla 2.1: Relación entre simetŕıa y ley de conservación (Teorema de Noether).

Es importante resaltar la relación que hay entre la teoŕıa de grupos y las simetŕıas pues,
de manera general, la teoŕıa de grupos proporciona un marco teórico matemático adecuado
para clasificar las simetŕıas f́ısicas; Cada conjunto de transformaciones (representadas como
matrices) que puede dejar invariante un sistema forma un grupo que tendrá ciertas propiedades,
dependiendo de la naturaleza de la simetŕıa en cuestión [9].

Grupos de Lie

Un grupo de Lie es un grupo tal que las operaciones de multiplicación e inversa, dependen
de manera continua y diferenciable de uno o más parámetros reales. Si un sistema, al aplicarle
las transformaciones asociadas a los elementos de un grupo de Lie, permanece indistinguible
del sistema original, se dice que el sistema tiene una simetŕıa continua con respecto a ese
grupo. Existen varios tipos de grupos continuos en f́ısica que pueden señalar una simetŕıa
subyacente

Grupo U(n):Corresponde a la colección de todas las matrices unitarias n x n, es decir, que
cumplen que la matriz inversa corresponde a la matriz conjugada hermı́tica U−1 = U †.

Grupo O(n): Corresponde a la colección de todas las matrices n × n ortogonales, es
decir, que sus inversas son equivalentes a sus transpuestas O−1 = OT .

Grupo SU(n): Corresponde a la colección de todas las matrices unitarias y especiales
n× n , que una matriz sea especial quiere decir que su determinante es igual a uno.

Grupo SO(n): Corresponde a la colección de todas las matrices ortogonales y especiales
n× n [9].

Existen tres grupos de Lie relevantes en f́ısica de part́ıculas para explicar las interacciones
fundamentales:

U(1)x: Siguiendo la definición anterior del caso genérico U(n), las matrices 1 × 1
que cumplen con la definición de grupo especial, se expresan como una exponencial
multiplicada por una fase real:

U = eiθx con U †U = I (2.15)

Por lo tanto, si un sistema queda invariante ante tal transformación, implica que tiene
simetŕıa U(1).

eiθxψ = ψ (2.16)
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SU(2)x: Cualquier matriz unitaria puede ser escrita en general, de la forma

U = eiH (2.17)

Donde H es hermı́tica H† = H, la matriz hermı́tica 2×2 más general puede ser expresada
en terminos de cuatro números reales a1, a2, a3, θ,

H = θI + τ⃗ · a⃗ (2.18)

Donde I es la identidad 2 × 2 y τ1, τ2, τ3 son las matrices de Pauli presentes en las
ecuaciones 2.4 (en este caso, se usa la notación τ en vez de σ pero son las mismas
matrices). Cualquier matriz unitaria 2× 2 puede expresarse como:

U = eiθxeiτ⃗ ·a⃗x (2.19)

Para cumplir con la condición de matriz especial detU = 1, θx debe ser igual a cero. De
esta forma, si un sistema es invariante ante una transformación SU(2) se dice que tiene
simetŕıa SU(2); esto es:

eiτ⃗ ·⃗aψ = ψ (2.20)

SU(3)x: Siguiendo la definición de un grupo unitario n × n, es posible construir las
matrices unitarias 3× 3. Una matriz hermı́tica 3× 3 puede expresarse en términos de
nueve parámetros reales a1, a2 . . . a8, θ:

H = θI + λ · a (2.21)

donde I es la matriz identidad 3 × 3 y λ1, λ2, . . . , λ8, son las matrices de Gell-Mann
presentes en el anexo 5.3; y el producto punto denota

λ · a = λ1a1 + λ1a1 +· · ·+ λ8a8 (2.22)

esto implica que,
U = eiθxeiλ·ax (2.23)

Para cumplir con la condición de matriz especial detU = 1, θx debe ser igual a cero.
Entonces, si un sistema es invariante ante una transformación,

eiλ·axψ = ψ (2.24)

se dice que tiene simetŕıa SU(3) [9].

También existen simetŕıas discretas, es decir que describen cambios no continuos en un sistema,
es conveniente mencionar directamente las simetŕıas discretas importantes para una teoŕıa
cuántica de campos:

Paridad: Antes de 1956, se daba por garantizado que las leyes de la f́ısica eran
ambidiestras es decir, la imagen espejo de cualquier proceso f́ısico representaba un
proceso completamente posible, sin embargo sabemos que esto no es cierto debido al
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experimento de Wu en 1957 [12]. La simetŕıa de paridad es una transformación P̂ que
invierte las coordenadas espaciales de un sistema f́ısico

P̂ψ(x) = ψ(−x) (2.25)

Además se cumple P̂ 2 = In×n. Si un sistema f́ısico permanece invariante ante tal
operación, se dice que conserva paridad, en lenguaje de teoŕıa de grupos podemos pensar
que el grupo paridad consiste en el operador P̂ y la matriz In×n

Conjugación de carga: Similar al caso anterior, existe un operador Ĉ que cambia el
signo de todas las cargas de los campos de un sistema. Puede entenderse como que el
operador paridad transforma una part́ıcula en su correspondiente antipart́ıcula.

Ĉψ = ψ̄ (2.26)

Ademas el operador cumple Ĉ2 = In×n. Sistemas que queden invariantes ante tal
transformación se dice que son simétricos ante conjugación de carga

Reversión temporal: La simetŕıa temporal está asociada al operador T̂ que cambia el
signo a la componente temporal de un sistema de la siguiente forma

T̂ψ(x, t) = ψ(x,−t) (2.27)

Nótese que el operador es anti lineal, por eso si consideramos campos cuánticos de-
bemos conjugar el campo si operamos T̂ . Sistemas que queden invariantes ante tal
transformación se dice que son simétricos ante reversión temporal [9].

2.4. Teoŕıas de gauge

Las teoŕıas de gauge describen todas las interacciones fundamentales de la f́ısica de
part́ıculas (exceptuando la gravedad); si tomamos, por ejemplo, la transformación U(1)x
definida anteriormente, nuestra fase θ se entiende como una fase global, esto quiere decir que
no depende de las coordenadas de espacio-tiempo xµ = x. En cambio, si θ = θ(x), se dice que
la fase es local. Si un sistema queda invariante ante una transformación cuya fase depende de
x, se dice que cumple con el principio de invarianza local de gauge. Una teoŕıa que cumple
con dicho principio se denomina teoŕıa de gauge.

2.4.1. Invarianza local de gauge U(1)

Tomemos como ejemplo el lagrangiano de Dirac presente en la ecuación 2.10, se puede
notar que dicho objeto es invariante ante la transformación U(1) = eiθ, no obstante, si θ
depende de las coordenadas espacio temporales x, el lagrangiano no es invariante, pues debido
al operador derivada parcial, se introduce un nuevo término al lagrangiano, tal que:

L −→ L− ∂µθψ̄γ
µψ (2.28)
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Por lo tanto, si consideremos la siguiente transformación:

Uq = e−iqλ(x) donde λ(x) = −θ(x)
q

(2.29)

donde q es una constante de acoplamiento que fija la intensidad con la que el campo vectorial
Bµ interactúa con los campos que transforman bajo la simetŕıa U(1)q. Para imponer invarianza
local, se reemplaza la derivada ordinaria del lagrangiano por la derivada covariante,

Dµ ≡ ∂µ + iqBµ (2.30)

donde se introduce un nuevo campo vectorial Bµ sin masa.
El lagrangiano de Dirac por lo tanto, se le debe introducir la parte cinética de este

nuevo campo vectorial, y como se mencionó anteriormente, los campos vectoriales tienen un
lagrangiano de Proca descrito por la ecuación 2.14. De esta forma el lagrangiano de Dirac con
invarianza local:

L = ψ̄(i γµDµ −m)ψ − 1

4
BµνBµν con Bµν = ∂µBν − ∂νBµ. (2.31)

De esta manera se define un nuevo lagrangiano que es invariante localmente ante U(1)q [9].

2.4.2. Invarianza local de gauge SU(2)

Sea la transformación SU(2) local de la forma,

S = e−igτ⃗ ·
⃗λ(x) con λ⃗(x) = − a⃗(x)

g
(2.32)

donde g correspondeŕıa a una constante de acoplamiento. Suponiendo que tenemos dos campos
con esṕın 1/2, ψ1 y ψ2, que tienen la misma masa m, el lagrangiano del sistema se puede
escribir de manera compacta utilizando que:

ψ =

(
ψ1

ψ2

)
(2.33)

por lo tanto, el lagrangiano,
L = i ψγµ∂µψ −mψψ

es idéntico al lagrangiano de Dirac presente en la ecuación 2.10, sin embargo, ahora ψ es un
vector columna de dos elementos. Tal objeto es invariante ante una transformación SU(2)
globalmente, es posible hacer que nuestro lagrangiano sea invariante localmente si redefinimos
la derivada ordinaria como una derivada covariante de la forma:

Dµ ≡ ∂µ + ig τ⃗ · W⃗µ (2.34)

Introduciendo, como consecuencia, tres nuevos campos vectoriales Wµ = (W µ
1 ,W

µ
2 ,W

µ
3 ) sin

masa, los cuales tienen sus respectivos lagrangianos de Proca sin masa asociados, que se deben
introducir al lagrangiano inicial, de esta forma:

L = ψ̄ (iγµDµ −m)ψ − 1

4
W a
µνW

aµν (2.35)
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Donde el indice a = 1, 2, 3, es para los tres campos vectoriales Wµ. Cabe mencionar que la
invarianza local nos obliga a redefinir el producto de los tensores W µν de la forma:

W a
µν = ∂µW

a
ν − ∂νW

a
µ + g ϵabcW b

µW
c
ν (2.36)

donde ϵabc corresponde al tensor de Levi-civita. De esta forma el lagrangiano resultante, es
invariante localmente ante una transformación SU(2)g y, representa dos campos de Dirac con
igual masa en interacción con tres campos vectoriales sin masa.

2.4.3. Invarianza local de gauge SU(3)

Continuando con la misma idea del caso anterior, un lagrangiano de Dirac que describe
tres campos de igual masa ψr, ψb, ψg, se pueden condensar en un solo vector columna:

L = i ψγµ∂µψ −mψψ con ψ =

ψrψb
ψg

 (2.37)

Dicho lagrangiano es invariante ante una transformación global SU(3). Si queremos imponer
invarianza local, consideremos la siguiente transformación:

S = e−igcλ⃗·ϕ⃗(x) con ϕ⃗(x) = − a⃗(x)
gc

(2.38)

Donde gc corresponde a una constante de acoplamiento, luego, reemplazamos la derivada
ordinaria del lagrangiano por su derivada covariante:

Dµ ≡ ∂µ + i gc λ⃗ · G⃗µ (2.39)

Lo que introduce 8 campos vectoriales Gµ que luego veremos que corresponden a los gluones.
Estos 8 nuevos campos introducen sus términos cinéticos de Proca al lagrangiano, resultando
en:

L = ψ̄ (iγµDµ −m)ψ − 1

4
Ga
µνG

aµν (2.40)

Donde se debe redefinir el tensor que describe el término cinético de los campos vectoriales,

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gc f

abcGb
µG

c
ν (2.41)

donde, fabc corresponde las constantes de estructura del grupo SU(3) presentes en el anexo
5.4. De esta forma, el lagrangiano resultante es invariante localmente ante una transformación
SU(3)g y, representa tres campos de Dirac con igual masa en interacción con ocho campos
vectoriales sin masa. [9]

2.5. Ruptura espontánea de la simetŕıa

Sea un lagrangiano de la forma,

L = 1
2
(∂µϕ1)(∂

µϕ1) +
1
2
(∂µϕ2)(∂

µϕ2) +
1
2
µ2(ϕ2

1 + ϕ2
2)− 1

4
λ2(ϕ2

1 + ϕ2
2)

2 (2.42)
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Donde, se describe dos campos escalares ϕ1,ϕ2 y µ con λ son dos constantes reales. Tal
lagrangiano es invariante ante ante transformaciones de SO(2) descritas en el anexo 5.5.

Es posible, expresar su enerǵıa cinética como,

K = 1
2
(∂µϕ1)(∂

µϕ1) +
1
2
(∂µϕ2)(∂

µϕ2) (2.43)

menos su energia potencial,

U = −1
2
µ2(ϕ2

1 + ϕ2
2) +

1
4
λ2(ϕ2

1 + ϕ2
2)

2 (2.44)

Al minimizar este potencial respecto a ϕ2
1 y ϕ2

2, se obtiene que su mı́nimo ocurre para:

ϕ2
1,min

+ ϕ2
2,min

=
µ2

λ2
(2.45)

Donde, de manera arbitraria, es posible escoger un estado fundamental o valor de expectación
del vaćıo (VEV) distinto a cero, que permita minimizar el potencial, tal que:

ϕ1,min
=
µ

λ
, ϕ2,min

= 0 (2.46)

Además, es posible introducir nuevos campos que son fluctuaciones alrededor de este VEV,

η = ϕ1 −
µ

λ
, ξ = ϕ2 (2.47)

Se puede reescribir el lagrangiano en función de estos nuevos campos,

L =
[
1
2
(∂µη)(∂

µη)− µ2η2
]
+
[
1
2
(∂µξ)(∂

µξ)
]

(2.48)

−
[
µλ(η3 + ηξ2) + λ2

4
(η4 + ξ4 + 2η2ξ2)

]
+ µ4

4λ2
(2.49)

Donde se puede observar que hay un término de masa para η,

mη =
√
2µ (2.50)

el cual, se deduce de la comparación con el lagrangiano de KG presente en la ecuación 2.12,
no obstante el campo ξ queda sin masa, este tipo de campos se denominan bosones de Nambú-
Goldstone, siempre aparecen cuando una simetŕıa global continua se rompe espontáneamente,
en este caso, la simetŕıa que se rompió espontáneamente fue SO(2), pues podemos notar que
el lagrangiano 2.49 ya no es simétrico ante tal grupo. Se dice que la ruptura fue espontánea
porque no hubo un agente externo que la rompiera; se rompe al escoger un valor arbitrario de
expectación del vaćıo (VEV) [9].

2.6. Mecanismo de Higgs

El mecanismo de Higgs consiste en la ruptura espontánea de la simetŕıa, pero en el caso
de una simetŕıa invariante localmente, como en el caso de las simetŕıas de gauge. Es de
hecho mediante este mecanismo, por el cual todas las part́ıculas del modelo estándar masivas
adquieren su masa, tales como: todos los fermiones cargados y los bosones vectoriales W± y
Z0.
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2.7. El modelo estándar

El modelo estándar es la teoŕıa que actualmente describe las part́ıculas fundamentales que
constituyen la materia y las interacciones que actúan sobre ellas. Se basa principalmente en
una teoŕıa cuántica de campos relativista, con varias simetŕıas locales de gauge involucradas,
que se pueden condensar en un único grupo, el grupo del ME,

SU(3)C × SU(2)L × U(1)Y

Este grupo de simetŕıas, fueron descritas de manera general en los apartados de invarianza
local de gauge 2.31, 2.35 y 2.40. Para el caso particular del grupo del ME, SU(3)c tiene
asociada la constante de acoplamiento gc, SU(2)L la constante de acoplamiento g y para el
grupo U(1)Y está asociada la constante de acoplamiento g′. Los sub́ındices C,L e Y en el
grupo indican la carga de color, la quiralidad zurda sobre la que actúa SU(2) y la hipercarga
asociada a U(1)Y respectivamente. Para el caso de la hipercarga y tercera componente de
isoesṕın, existe la relación de Gell-Mann-Nishijima.

Q = I3 +
Y

2
(2.51)

La cual nos relaciona la carga eléctrica de una part́ıcula, con su tercera componente de isoesṕın
e hipercarga.

2.7.1. Leptones

Dentro del ME, existen seis tipos de leptones, los cuales son part́ıculas fermiónicas que se
pueden separar por tres generaciones como se muestra en la tabla 2.2, donde cada generación
leptónica constituye un doblete leptónico izquierdo, cuyo lagrangiano que lo describe es
invariante ante transformaciones del grupo SU(2)L×U(1)Y , dicho doblete se conforma de una
part́ıcula cargada eléctricamente con quiralidad zurda, como e−, µ−, τ− y su neutrino asociado
zurdo, νe, νµ, ντ . Dichos dobletes, poseen carga de isosṕın I = 1

2
e hipercarga YL = −1.

Li =

(
νiL
eiL

)
i = 1, 2, 3. (2.52)

Donde i = 1, 2, 3 corresponde a las generaciones leptónicas presentes en la tabla 2.2. Dentro
del doblete, la componente asociada al neutrino tiene valor de la tercera componente de
isosṕın I3(νiL) = +1/2 mientras que la componente cargada tiene como tercera componente
de isosṕın I3(eiL) = −1/2, lo que mantiene coherencia con la relación 2.51. Además, existen
leptones cargados eléctricamente con quiralidad diestra, pero son singletes de SU(2)L con
isosṕın nulo e hipercarga YeR = −2, en este documento se escribirán de la forma:

eiR singlete leptónico diestro (2.53)

donde i, en este caso, representa a los sabores leptónicos que corresponden a electrónico,
muónico y tauónico. El ME no contiene neutrinos diestros, por lo tanto, no existen singletes
diestros del tipo neutrino. También, cabe mencionar que los leptones no poseen carga de
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Leptón Q I3 Y Le Lµ Lτ
Primera generación

eL −1 −1/2 −1 1 0 0
eR −1 0 −2 1 0 0
νeL 0 +1/2 −1 1 0 0

Segunda generación
µL −1 −1/2 −1 0 1 0
µR −1 0 −2 0 1 0
νµL 0 +1/2 −1 0 1 0

Tercera generación
τL −1 −1/2 −1 0 0 1
τR −1 0 −2 0 0 1
ντL 0 +1/2 −1 0 0 1

Tabla 2.2: Clasificación leptónica del Modelo Estándar, incluyendo las cargas Q, I3, Y y los
números leptónicos.

color, por lo tanto, se consideran singletes con respecto al grupo SU(3)C . Cada leptón, tiene
números cuánticos asociados en adición a los ya mencionados, tales como su número leptónico
(electrónico, muónico y tauónico) y carga eléctrica .

A su vez, existen 6 leptones más correspondientes a las antipart́ıculas asociadas a las
part́ıculas mostradas en la tabla 2.2, cuyos números cuánticos asociados son los mismos, pero
con signo cambiado.

2.7.2. Quarks

También existe otro grupo de fermiones, los quarks, hay seis tipos de sabores de quarks,
los cuales se clasifican por el valor de sus números cuánticos asociados a los sabores up, down,
strange, charm, top y bottom. Al igual que los leptones, forman dobletes zurdos de SU(2)L
entre generaciones, dichos dobletes tienen hipercarga YQL

= 1/3 e isosṕın I = 1/2,

qiL =

(
uiL
diL

)
i = 1, 2, 3. (2.54)

donde i = 1, 2, 3 representa las generaciones de quarks presente en la tabla 2.3. Donde, de
manera similar a los leptones, se tienen los valores de la tercera componente de isosṕın,
I3(uiL) = +1/2, mientras que I3(diL) = −1/2. También, existen quarks que son singletes
diestros del grupo SU(2)L,

uiR , con hipercarga YuR =
4

3
, diR , con hipercarga YdR = −2

3
(2.55)

Cabe mencionar que, al igual que en el caso de los leptones, existen las antipart́ıculas de los
quarks, que son el mismo quark pero con sus números cuánticos mostrados en la tabla 2.3
invertidos en signo. Otra particularidad de los quarks es que, a diferencia de los leptones, los
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quarks portan la carga de color, la cual se clasifica en tres tipos: rojo, verde y azul. Por lo
tanto, los quarks dentro del ME se consideran tripletes de SU(3)C esto es,

qi =

qrqg
qb

 (2.56)

Donde i, en este caso se refiere a los seis sabores de quarks existentes. Esto implica que el
número total de quarks pertenecientes al modelo estándar es de 36.

Quark Q I3L I3R YL YR
Primera generación

u +2/3 +1/2 0 +1/3 +4/3
d −1/3 −1/2 0 +1/3 −2/3

Segunda generación
c +2/3 +1/2 0 +1/3 +4/3
s −1/3 −1/2 0 +1/3 −2/3

Tercera generación
t +2/3 +1/2 0 +1/3 +4/3
b −1/3 −1/2 0 +1/3 −2/3

Tabla 2.3: Quarks del ME y sus números cuánticos: carga eléctrica Q, isosṕın débil I3 e
hipercarga Y para las componentes quirales izquierda y derecha.

2.7.3. Bosón de Higgs

Además, dentro del ME hay una part́ıcula fundamental, el bosón de Higgs, dicha part́ıcula
es un bosón escalar cuyo esṕın tiene valor igual a cero. Este campo se introduce como un
doblete escalar complejo de SU(2)L con hipercarga Y = 1.

H =

(
ϕ+

ϕ0

)
(2.57)

donde la componente ϕ+ corresponde a la parte cargada eléctricamente del Higgs mientras que
ϕ0 corresponde a la parte neutra. El bosón de Higgs, es la part́ıcula responsable de generar la
masa de los bosones débiles que aparecen al imponer local la simetŕıa SU(2)L 2.35, y además,
generar masas para todos los fermiones del ME, esto es mediante la ruptura espontánea de la
simetŕıa SU(2)L × U(1)Y . La dinámica del bosón se describe mediante su término cinético y
su potencial escalar,

V (H) = −µ2H†H + λ(H†H)2 (2.58)

donde µ y λ son constantes reales. El potencial escalar del Higgs corresponde al término
más general renormalizable e invariante bajo la simetŕıa SU(2)L × U(1)Y . Además, el signo
negativo de µ2 asegura que el potencial posea un mı́nimo no trivial, lo que permite obtener
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un VEV no nulo para el campo. Al escoger un VEV distinto a cero que minimice el potencial,
el campo adquiere el valor,

⟨H⟩ = 1√
2

(
0
v

)
(2.59)

con v ≈ 246 GeV. Tal VEV, rompe espontáneamente la simetŕıa SU(2)L × U(1)Y dando
paso a la simetŕıa U(1)EM relacionada al electromagnetismo y la carga eléctrica. Además, los
bosones vectoriales que aparećıan naturalmente al imponer una simetŕıa SU(2) local en el
apartado 2.35, se transforman en los bosones débiles W± y Z que se relacionan de la siguiente
forma,

W+
µ =

W 1
µ − iW 2

µ√
2

(2.60)

W−
µ =

W 1
µ + iW 2

µ√
2

(2.61)

Zµ = cos θW W 3
µ − sin θW Bµ (2.62)

Aµ = sin θW W 3
µ + cos θW Bµ. (2.63)

Donde θW , corresponde al ángulo de Weinberg y se definen las relaciones trigonométricas,

cos θW =
g√

g2 + g′2
sin θW =

g′√
g2 + g′2

(2.64)

donde g′ corresponde a la constante de acoplamiento asociada a la hipercarga y g corresponde
a la constante de acoplamiento de interacción débil.

Es importante resaltar que el valor del VEV del Higgs v ≈ 246 GeV se determina
experimentalmente. Pues, al introducir tal valor de VEV al término cinético del Higgs, los
campos adquieren términos de masa:

mW =
1

2
gv, mz =

1

2

√
g2 + g′2v (2.65)

Por lo tanto, midiendo experimentalmente mW y mZ , y conociendo los valores de los acopla-
mientos g y g′, se obtiene que el vev del Higgs debe ser v ≈ 246 GeV.

2.7.4. Interacciones Fundamentales

Hasta donde sabemos, existen sólo cuatro interacciones fundamentales en la naturaleza:
Fuerte, electromagnética, débil y gravitacional. El ME, describe tres interacciones fundamen-
tales, dejando de lado la interacción gravitacional, dicha interacción, se describe mediante
la teoŕıa de la relatividad general de Einstein. Además, cada interacción tiene una teoŕıa
cuántica relativista que la describe adecuadamente. También, dentro del ME, cada interacción
fundamental tiene una part́ıcula mediadora de la interacción asociada, las part́ıculas mediado-
ras, cumplen con la particularidad de ser part́ıculas con esṕın de valor 1, es decir son bosones
vectoriales. Dichas part́ıculas, aparecen de manera natural en el ME cuando imponemos que
una simetŕıa global sea local, de ah́ı nace la relación entre las simetŕıas y las interacciones
fundamentales dentro del ME.
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2.7.5. Interacción Fuerte SU(3)C

La interacción fuerte está descrita por la cromodinámica cuántica (QCD), las únicas
part́ıculas que interactúan fuertemente, son las part́ıculas que tienen carga de color, como
es el caso de los quarks y gluones. Cabe mencionar que los gluones son los campos Ga

µν que
aparecen al imponer la simetŕıa global SU(3)C como local, como se muestra en la ecuación
2.40. Además, son los campos vectoriales mediadores de la interacción fuerte, por lo tanto, la
interacción fuerte que hay entre dos quarks es mediada mediante el intercambio de gluones.
Lo que nos dice que tan fuerte será una interacción es la constante de acoplamiento de dicha
interacción, para el caso de QCD, la constante de acoplamiento gc no es realmente constante,
depende de la separación entre las part́ıculas interactuantes, dicho fenómeno se le conoce como
libertad asintótica. Las interacciones entre quarks se debilitan mientras menor sea la distancia
entre ellos y aumentan mientras mayor sea la distancia entre ellos, es precisamente por este
hecho, por el cual no hay en la naturaleza quarks ”libres”. Además, los quarks suelen estar
confinados en hadrones. Los hadrones son part́ıculas no fundamentales, como es el caso de los
bariones que son part́ıculas formadas por tres quarks qqq y los mesones, que son part́ıculas
formadas por un quark y antiquark qq̄ [9].

2.7.6. Interacción Electromagnética U(1)EM

La interacción electromagnética se describe mediante la teoŕıa de la electrodinámica
cuántica (QED). Es aquella interacción que se produce entre dos o más part́ıculas las cuales
son portadoras de carga eléctrica, produciendo una fuerza de atracción para cargas de distinto
signo y una fuerza de repulsión para cargas de mismo signo. La part́ıcula mediadora de la
interacción corresponde al fotón, cuyo campo vectorial Aµ que lo describe, aparece post-
ruptura espontánea de la simetŕıa SU(2)L × U(1)Y como una combinación entre los campos
Wµ y el campo Bµ como se muestra en las ecuaciones 2.63. La constante de acoplamiento
de esta interacción tiene el valor de la magnitud de la carga eléctrica de un electrón, que se
define como e =

√
4πα, donde la constante de estructura fina α = 1

137
.

2.7.7. Interacción débil SU(2)L

La interacción débil forma parte de la teoŕıa electrodébil descrita por el grupo SU(2)L ×
U(1)Y . A diferencia de la interacción electromagnética y fuerte, la interacción débil actúa sólo
sobre fermiones con quiralidad izquierda, los cuales pre-ruptura de la simetŕıa se organizaban
en los dobletes descritos en las ecuaciones 2.54 y 2.52. En esta interacción, a diferencia de
la fuerte o electromagnética, no existe una única carga débil, análoga al color o la carga
eléctrica, sin embargo, todos los quarks y leptones pueden interactuar débilmente. Además, la
intensidad de la interacción está definida por la constante de acoplamiento del grupo SU(2)L
y el grupo U(1)Y , la cual se relaciona con la carga eléctrica mediante, e = g sin θW = g′ cos θW .
Además, Los mediadores de la interacción débil, son los bosones vectoriales W± y Z0 descritos
en las ecuaciones 2.63.
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2.7.8. Lagrangiano del modelo estándar

Considerando todas las part́ıculas del ME y sus interacciones, es posible condensar toda
esta información en un solo objeto, el lagrangiano del ME, el cual tiene todos los términos
posibles que respeten la simetŕıa SU(3)C × SU(2)L × U(1)Y . Además, el lagrangiano del
ME, debe respetar en su totalidad la simetŕıa discreta CPT , que es la combinación de
las tres simetŕıas discretas mencionadas anteriormente. También, se debe considerar que el
lagrangiano del ME es un objeto invariante ante transformaciones de Lorentz, es decir, respeta
los principios de la relatividad especial de Einstein. El lagrangiano del ME se puede escribir
como la suma de otros lagrangianos,

LME = LG + LK + LH + LY (2.66)

Es conveniente definir una sola derivada covariante para todo el ME, la cual condense lo
necesario para cumplir con el principio de invarianza local de gauge para el grupo del ME.

D = ∂µ + ig′Y Bµ + ig τ⃗ · W⃗µ + gc λ⃗ · G⃗µ (2.67)

Se puede observar que esta derivada covariante, se define en función de las ecuaciones 2.30,
2.34 y 2.39.

Lagrangiano LG

El lagrangiano de gauge es la parte cinética de todos los bosones de gauge que se dedujeron
en el apartado de teoŕıas de gauge, es decir,

LG = −1

4
BµνBµν −

1

4
W aµνW a

µν −
1

4
GaµνGaµν (2.68)

donde las definiciones de los tensores Bµν , Wµν y Gµν , vienen dadas por las ecuaciones 2.31,
2.36 y 2.40 respectivamente.

Lagrangiano LK

Este lagrangiano se construye a partir de los términos cinéticos de cada uno de los fermiones
del modelo estándar, esto se puede expresar como,

LK =
∑
ψ

ψ̄iγµDµψ (2.69)

Donde, ψ = L, er, qL, ur, dR son los fermiones del ME. Además La suma incluye a todas las
generaciones, colores y representaciones de SU(2)L.

Lagrangiano LH

Este lagrangiano se construye a partir de la parte cinética del Higgs que, al ser un bosón
con esṕın cero, se describe mediante el lagrangiano de KG descrito en la ecuación 2.12. por lo
tanto, su parte cinética tiene la forma:

LKH = (DµH)†(DµH) (2.70)
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donde H es el doblete del Higgs definido en la ecuación 4.3. Por lo tanto,

LH = (DµH)†(DµH)− µ2H†H + λ(H†H)2 (2.71)

donde se le añade el potencial del Higgs definido en la ecuación 2.58.

Lagrangiano LY

En el ME, los fermiones no puede poseer términos de masa, pues tales términos no respetan
la simetŕıa de gauge del ME, por lo tanto el ME proh́ıbe cualquier masa fermiónica antes de la
ruptura espontánea de la simetŕıa. Sin embargo, el campo de Higgs es un doblete de SU(2)L,
lo que nos permite construir operadores que conectan fermiones izquierdos y derechos sin
romper la simetŕıa de gauge del ME. Estos operadores son los términos de Yukawa Yu,Yd e Ye,
los cuales se entienden como matrices complejas calculadas experimentalmente tras conocer
las masas de los fermiones, por lo tanto el lagrangiano del sector de yukawas se escribe como,

LY = −
(
Q̄L Yu H̃ uR + Q̄L YdH dR + L̄L YeH eR + h.c.

)
(2.72)

Donde, el higgs conjugado H̃ se define como,

H̃ = iτ2H
∗ =

(
ϕ0∗

−ϕ−

)
(2.73)

Además, la componente τ2 se refiere a la segunda matriz de Pauli descrita en las ecuaciones
2.4. Y el término h.c. significa que hay que sumar el hermı́tico conjugado de cada término. Es
importante resaltar que la ecuación 2.72 está compactada, la versión expandida está presente
en el anexo 5.6. A pesar del gran éxito experimental de este modelo, el ME es una teoŕıa
incompleta, pues no explica la gravedad, la materia oscura, la enerǵıa oscura ni la masa
de los neutrinos, por ello es un componente fundamental pero no es definitivo, de ah́ı que
existan modelos más allá del modelo estándar como es el caso que se propone en el presente
documento [9].
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Caṕıtulo 3

Neutrinos

En este caṕıtulo se abordará la historia del neutrino como part́ıcula postulada debido al
estudio del decaimiento tipo beta.

Además, se indagará en el mecanismo de oscilación de neutrinos entre sus tres sabores,
electrónico, muónico y tauónico, con el objetivo principal de demostrar que al haber oscilación
de sabores, los neutrinos deben tener masa.

Posteriormente, se evaluarán los términos de masa tipo Dirac y términos de masa tipo
Majorana, en adición a los mecanismos como extensiones del ME, por los cuales los neutrinos
adquieren masa, tales como los mecanismos tipo Seesaw.

3.1. Historia

Históricamente, se propuso la existencia del neutrino debido al estudio de un decaimiento
beta en los años 1930. En un decaimiento tipo beta, un núcleo radioactivo A se transforma
en un núcleo un poco más ligero B, con la emisión de un electrón:

A −→ B + e− (3.1)

Las leyes de conservación de carga requieren que B deba tener una unidad más de carga
positiva que A, tal proceso podŕıa ser el decaimiento de un neutrón A en un protón B. Ahora,
en un decaimiento de dos cuerpos A −→ B + C, las enerǵıas salientes están cinemáticamente
determinadas, en el marco de referencia del centro de cuadri-momento, esto quiere decir,

E =
(m2

A −m2
B +m2

c

2mA

)
c2 (3.2)

Lo importante a resaltar de esto, es que E está fijado una vez se conocen las tres masas de
los cuerpos involucrados. Sin embargo, experimentalmente se determinó que los electrones
emitidos variaban considerablemente en enerǵıa, por lo tanto, la ecuación 3.2 sólo determina
la máxima enerǵıa de un electrón en un particular decaimiento tipo beta. Es por este hecho
que, el cient́ıfico Wolfgang Pauli sugirió que otra part́ıcula es emitida durante un decaimiento
beta, una part́ıcula ”silenciosa”, la cual se lleva la enerǵıa ”perdida”. Tal part́ıcula, debiese
ser eléctricamente neutral, con el fin de conservar la carga eléctrica en un decaimiento beta.
Además, debido a que experimentalmente la enerǵıa máxima del electrón fijada por la ecuación
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3.2, coincid́ıa con el valor máximo del espectro de enerǵıas observado experimentalmente, se
deduce que la part́ıcula debe ser extremadamente ligera. Si dicha part́ıcula tuviese una masa
considerable, los valores experimentales del espectro de enerǵıas tendŕıan un corrimiento hacia
abajo, lo cual no coincide con las observaciones.

Debido a la neutralidad de la part́ıcula y su ligereza, el cient́ıfico Enrico Fermi la denominó
neutrino (que en italiano significa literalmente ”pequeño neutro”).

En el contexto de un decaimiento beta, actualmente nos referimos a un anti-neutrino, el
cual tiene las mismas propiedades que el neutrino pero con sus números cuánticos invertidos
de signo. Por lo tanto, en la notación moderna, un decaimiento beta se escribe como,

n −→ p+ + e− + ν̄e (3.3)

donde p+ corresponde a un protón, n corresponde a un neutrón y ν̄e corresponde a un
anti-neutrino del tipo eléctrico. Distintos experimentos tales como el del decaimiento beta,
mostraban la necesidad de la existencia del neutrino como part́ıcula fundamental, sin em-
bargo, fue complicado demostrar su existencia experimentalmente, pues el neutrino tiene
la particularidad de que interactúa muy débilmente con la materia, de hecho, un neutrino
puede fácilmente penetrar 1000 años luz de plomo pasando totalmente desapercibido en el
proceso. Para corroborar la existencia del neutrino experimentalmente, se realizaron una serie
de experimentos en el reactor nuclear Savannah River en Carolina del Sur, alrededor de los
años 1950. En tal reactor nuclear, los cient́ıficos Cowan y Reines, llenaron un gran tanque de
agua y esperaban observar el decaimiento beta inverso, es decir,

ν̄e + p+ −→ n+ e− (3.4)

En tal detector, el flujo de anti-neutrinos se calculó de ser aproximadamente 5×1013 part́ıculas
por cent́ımetro cuadrado por segundo, pero incluso con ese flujo, solo se esperaba tener dos o
tres eventos cada hora. Por otro lado, desarrollaron un método para identificar el positrón
saliente de tal reacción. Finalmente, sus resultados fueron positivos y dieron información
ineqúıvoca de la existencia del neutrino [13].

3.2. Oscilación de neutrinos

A medida de que fue descubierto el neutrino, se ha hecho distintas observaciones y
experimentaciones con el fin de entender en mayor profundidad a esta part́ıcula, una de esas
experimentaciones se realizó en 1969 por el cient́ıfico Raymond Davis [14], el cual buscó
detectar los neutrinos electrónicos que debiesen llegar a la tierra producto a las reacciones
nucleares en el interior del sol, sin embargo, los resultados fueron desconcertantes, pues el
número de neutrinos electrónicos detectados correspond́ıa a aproximadamente la mitad del
valor esperado. Este problema fue resuelto por los experimentos realizados en el SNO [2]
y el Super Kamiokande [3]; donde se descubrió que los neutrinos pueden cambiar de sabor
leptónico, dicho fenómeno se conoce como oscilación de neutrinos. La oscilación de neutrinos
es un fenómeno en el cual un cierto sabor de neutrino να, periódicamente cambia a otro sabor
de neutrino νβ y viceversa. Este fenómeno es causado por una amplitud de transición entre
να y νβ. Debido a esta amplitud de transición, los autoestados de sabor no tienen masas fijas
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y se convierten en superposiciones de autoestados de masa. La función de onda general para
tres sabores de neutrinos se expresa como,

|ψν(t)⟩ = Ce(t) |νe⟩+ Cµ(t) |νµ⟩+ Cτ (t) |ντ ⟩ (3.5)

Por lo tanto, hay nueve amplitudes de transición entre los tres estados de sabor del neutrino.
Se define la ecuación de estado relativista como,

dC(t)

dt
= − i

1

γ
J C(t) = − iJ ′C(t), (3.6)

donde,

C(t) =

Ce(t)
Cµ(t)
Cτ (t)

 ,J ′ =
1

γ

µe τ ∗µe τ ∗τe
τµe µµ τ ∗τµ
ττe ττµ µτ

 (3.7)

y J ′ es la matriz de transición efectiva. La ecuación 3.6 describe la evolución temporal del
neutrino en la base de sabores, donde el vector columna 3.7, es un vector de amplitudes de
probabilidad de que el neutrino sea electrónico, muónico o tauónico en el tiempo t. Para
resolver la ecuación 3.6, se debe diagonalizar la matriz J ′ utilizando una matriz unitaria Uν ,

U †
ν J ′ Uν =M ′ =

1

γ

m1 0 0
0 m2 0
0 0 m3

 . (3.8)

Donde se escribe los elementos de Uν de la forma,

Uν =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 (3.9)

Por lo tanto, la matriz de elementos Uαi y las masas mi son combinaciones de los elementos de
las amplitudes de transición Jαβ. Si utilizamos la matriz de masa M ′, la ecuación de estado
3.6 puede ser escrita como,

dD(t)

dt
= − iM ′D(t) (3.10)

donde,

D(t) =

D1(t)
D2(t)
D3(t)

 = U †
νC(t) (3.11)

Tal ecuación, puede ser resuelta como,

D(t) = W (t)D(0) (3.12)

donde,

W (t) =

e−i(m1/γ)t 0 0
0 e−i(m2/γ)t 0
0 0 e−i(m3/γ)t

 . (3.13)
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Por consecuencia, C(t) puede ser obtenido a partir de D(t) como,

C(t) = UνD(t) = [UνW (t) ]D(0) =
[
UνW (t)U †

ν

]
C(0) (3.14)

Ahora, la función de onda de la ecuación 3.5 puede ser escrita en función de la ecuación 3.14
como la suma de tres autoestados de masa,

|ψν(t)⟩ = e−i(m1/γ)tD1(0) |ν1⟩+ e−i(m2/γ)tD2(0) |ν2⟩+ e−i(m3/γ)tD3(0) |ν3⟩ (3.15)

donde los autoestados de masa |νi⟩ son mezclas de los tres autoestados de sabor |να⟩ dados
por, |ν1⟩

|ν2⟩
|ν3⟩

 =

Ue1 Uµ1 Uτ1
Ue2 Uµ2 Uτ2
Ue3 Uµ3 Uτ3

|νe⟩
|νµ⟩
|ντ ⟩

 = UT
ν

|νe⟩
|νµ⟩
|ντ ⟩

 (3.16)

Donde la matriz de mezcla Uν se le conoce como la matriz de Maki-Nakagawa-Sakata-
Pontecorvo (MNSP) [15]. Lo importante de este fenómeno es que, la oscilación de neutrinos
solo es posible si los autoestados de sabor son combinaciones de autoestados de masa con
masas distintas. Si mi = 0 o m1 = m2 = m3 las fases temporales son iguales y el fenómeno
desaparece. Por lo tanto, el hecho experimental de que existan cambios de sabor entre los
neutrinos, implica que los neutrinos han de tener una masa distinta a cero. Sin embargo, en
el ME los neutrinos se asumen como part́ıculas sin masa, por ello, es necesario hacer una
extensión al ME para explicar la masa de los neutrinos.

3.3. La masa de los neutrinos

En el modelo estándar, los neutrinos son fermiones que forman parte del doblete leptónico,
LTLℓ =

(
νℓ ℓ

)
L
Los neutrinos que son parte de este doblete leptónico se denominan neutrinos

activos, y corresponden a los neutrinos asociados a cada leptón cargado, ℓ = e, µ, τ . Cómo
se mencionó en el apartado del ME, el grupo SU(2)L esta relacionado con la interacción
débil, es decir, los neutrinos sólo interactúan débilmente mediante la interacción débil cargada
(asociada a los bosones W+−), y la interacción débil neutra (asociada al bosón Z0).

3.3.1. Términos de masa para neutrinos.

Los términos de masa de neutrinos pueden ser construidos de varias formas, siempre que
se respete la simetŕıa de gauge del modelo estándar. Es posible añadir distintos términos
al lagrangiano del ME, por ejemplo, una extensión posible del modelo estándar es añadir
neutrinos estériles derechos, que son part́ıculas que no interactúan bajo el grupo de gauge del
modelo estándar. El añadir m, número de neutrinos estériles νsi, nos permite construir dos
tipos de términos de masa en el lagrangiano del modelo estándar:

−LMν =MDij ν̄siνLj +
1

2
MNij ν̄siν

c
sj + h.c. (3.17)

donde νL corresponde al neutrino activo zurdo del ME, νc es el neutrino con su campo
conjugado, MD es una matriz compleja de dimensión m× 3 y MN es una matriz simétrica de

24



m×m. el primer término de masa es generado luego de la ruptura espontánea de la simetŕıa
electrodébil,

Y ν
ij ν̄si ϕ̃

†LLj ⇒MDij = Y ν
ij

v√
2
, (3.18)

Este corresponde al término de masa de Dirac y conserva totalmente el número leptónico.
El segundo término del lagrangiano corresponde al término de masa de Majorana, nótese
que difiere del termino de Dirac por distintos aspectos, por ejemplo, es un singlete ante
el grupo de gauge, es decir, puede aparecer como un término desnudo en el lagrangiano,
también, involucra dos neutrinos diestros (estériles), lo que implica que rompe el número
leptónico en dos unidades, tal término no debiese estar permitido si los neutrinos llevan cargas
conservativas. El lagrangiano 3.17, se puede reescribir como:

−LMν =
1

2

(
¯⃗
νcL

¯⃗νs

)(
0 MT

D

MD MN

)(
ν⃗L
ν⃗cs

)
+ h.c. ≡ ¯⃗νcMν ν⃗ + h.c., (3.19)

donde v⃗ = (v⃗L, v⃗cs)
T es un vector de dimensión (3+m). La matrizMν es una matriz compleja y

simétrica que puede ser diagonalizada mediante una matriz unitaria V ν de dimensión (3 +m),
lo que implica que,

(V ν)TMνV
ν = diag(m1,m2, . . . ,m3+m). (3.20)

Entonces, es posible expresar los autoestados de sabor iniciales, en términos de autoestados
de masa,

ν⃗mass = (V ν)†ν⃗ (3.21)

Por lo tantos los términos de masa de 3.17, en función de los autoestados de masa toman la
forma,

−LMν =
1

2

3+m∑
k=1

mk

(
ν̄cmass,kνmass,k + ν̄mass,kν

c
mass,k

)
=

1

2

3+m∑
k=1

mkν̄MkνMk, (3.22)

donde
νMk = νmass,k + νcmass,k = (V ν†ν)k + (V ν†ν)ck.

Por lo tanto, esos estados cumplen con la condición de Majorana

νM = νcM .

y se les llama neutrinos de Majorana. La condición de majorana implica que solo un campo,
describe tanto al neutrino como al anti-neutrino, a diferencia de los fermiones cargados cuyas
part́ıculas y antipart́ıculas se describen mediante distintos campos. Esto significa que los
neutrinos de majorana pueden ser descritos por solamente un espinor de dos componen-
tes, a diferencia de las part́ıculas de Dirac, que se describen mediante espinores de cuatro
componentes [5].
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3.3.2. Mecanismo de Seesaw tipo I

Si los autovalores de MN son mucho mayores que los valores de masa del modelo estándar,
la diagonalización se considera perturbativa, Mν lleva a tener tres neutrinos ligeros νl y m
neutrinos pesados, N :

−LMν =
1

2
ν̄lM

lνl +
1

2
N̄MhN, (3.23)

con,
M l ≃ −V T

l M
T
DM

−1
N MDVl, Mh ≃ V T

h MNVh, (3.24)

y,

V ν ≃

(1− 1
2
M †

DM
∗−1
N M−1

N MD

)
Vl M †

DM
∗−1
N Vh

−M−1
N MDVl

(
1− 1

2
M−1

N MDM
†
DM

∗−1
N

)
Vh

 , (3.25)

donde Vl y Vh son matrices unitarias 3× 3 y m×m respectivamente. Se observa que M l es
inversamente proporcional a MN mientras que Mh es directamente proporcional a MN , de
ah́ı el nombre See-saw (balanćın en inglés), pues si M l debe ser pequeño, implica que Mh

debe ser grande [5].
Cabe mencionar que el mecanismo Seesaw tipo I, permite introducir términos de masa sin

romper ninguna simetŕıa de gauge del ME, ya que los neutrinos derechos son singletes bajo
el grupo de gauge del ME. No obstante, el modelo seesaw I, no tiene un mecanismo con el
cual, de manera natural aparezcan los términos de masa para los neutrinos diestros. Además,
para cumplir con la ligereza de los neutrinos activos del ME, es necesario introducir neutrinos
derechos con masas extremadamente pesadas, que se acercan a la escala de gran unificación,
siendo totalmente inaccesible su verificación experimental.

3.3.3. Mecanismo See-saw inverso mı́nimo

El mecanismo de See-saw inverso mı́nimo (SI), requiere introducir dos neutrinos estériles
diestros, obteniendo aśı un lagrangiano relacionado a los términos de masa,

L = −1

2
nTLCMnL + h.c., (3.26)

donde, nTL = (νL, N
c
1 , N2), C corresponde al operador de conjugación de carga, mientras que

N1 y N2 corresponden a los neutrinos estériles diestros. para el caso de solo un neutrino activo,
la matriz de masa para los autoSestados de interacción débil, M corresponde a,

M =

 0 mD 0
mD 0 M
0 M µ

 , (3.27)

Por lo tanto, si descomponemos 3.26, el lagrangiano queda como,

L = −mD ν̄LNR1 −M N̄R2NR1 −
µ

2
N̄ c
R2NR2 + h.c. (3.28)
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La matriz 3.27 puede ser diagonalizada perturbativamente, de manera similar al caso del
mecanismo See-saw tipo uno, cuando µ ≪ mD ≪ M , lo que nos proporciona un neutrino
masivo. La matriz unitaria que nos permite acceder a los autoestados de masa viene dada por,

UI =


1

mDµ

M2 +m2
D

−mD

M
imD√
2M

i√
2

− i√
2

mD√
2M

1√
2

1√
2

 (3.29)

donde la diagonalización perturbativa [16],

UT
1 MUI =

(mD

M
)2µ 0 0

0 M +
m2

D

M
+ µ

2
iµ
2

0 iµ
2

M +
m2

D

M
− µ

2

 (3.30)

Por lo tanto,

mν =
(mD

M

)2

µ, (3.31)

mN1 =M +
m2
D

M
− µ

2
, (3.32)

mN2 =M +
m2
D

M
+
µ

2
(3.33)

(3.34)

serán los valores de las masas del neutrino activo mν , el neutrino estéril mN1 y el neutrino
estéril mN2 respectivamente [6].
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Caṕıtulo 4

El modelo seesaw inverso con ruptura
espontánea de la simetŕıa U(1)
leptónica

El modelo estándar cuenta con su simetŕıa de gauge requerida para que existan las
interacciones fundamentales (exceptuando la gravedad). En ausencia de singletes bajo el grupo
de gauge completo del ME, se observa que existe una simetŕıa adicional, la cual aparece de
manera accidental, pero como consecuencia de la simetŕıa de gauge del ME.

Gglobal
ME = U(1)B × U(1)ℓ (4.1)

donde U(1)B es la simetŕıa del número bariónico, y U(1)ℓ corresponde la simetŕıa del número
leptónico total, Le + Lµ + Lτ . Como bien se menciono en el apartado del ME, la ruptura
espontánea de la simetŕıa da masa a part́ıculas, entonces, al combinar el mecanismo de SI que
da una forma de matriz de masa para los neutrinos, una causa de esas masas puede ser la
ruptura espontánea de la simetŕıa UL(1) [6].

4.1. Lagrangiano del modelo

Considerando la simetŕıa U(1)L y el mecanismo de SI, es posible construir el siguiente
lagrangiano,

L = − yL LHN
c
1 − yS S

†N2N
c
1 −

yX
2
X†N c

2N2 + h.c. (4.2)

El doblete del Higgs se define como, HT = (χ+, (vh + σh + iχh)/
√
2), donde σh corresponde

a su componente escalar, χh corresponde a su componente pseudo-escalar, vh ≈ 246 GeV
corresponde a su VEV y χ+ corresponde a la componente longitudinal de W+. También
se introducen tres nuevos acoplamientos de Yukawa, yd,ys,yx los cuales no deben exceder el
ĺımite perturbativo, es decir, |yi| ≤

√
4π. Además, se introducen dos nuevos campos escalares

complejos, los cuales están cargados bajo carga leptónica pero son neutrales ante todo el
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grupo de gauge del ME [6].

H =

 χ+

vh + σh + iχh√
2

 (4.3)

S =
(vs + σs + iχs)√

2
(4.4)

X =
(vx + σx + iχx)√

2
(4.5)

Notese, que estos campos tienen su parte escalar asociada a σi y su parte pseudo-escalar
asociada a χi. Luego de la ruptura espontánea de la simetŕıa U(1)l, estos campos adquieren
sus respectivos VEVS vs y vx. Por lo tanto, los términos de masa del modelo tendrán la forma:

mD =
yLvh√

2
, (4.6)

M =
ySvS√

2
, (4.7)

µ =
yXvX√

2
. (4.8)

De estas relaciones, debido al ĺımite perturbativo de los yukawas |yi| ≤
√
4π, se pueden

establecer cotas inferiores para los VEVS,

vS ≥ M√
2π
, (4.9)

vX ≥ µ√
2π
. (4.10)

Por otro lado, el lagrangiano del modelo presente en la ecuación 4.2, debe ser invariante
bajo la simetŕıa global U(1)ℓ. Esta condición fija parcialmente las cargas leptónicas de los
nuevos campos debido a los acoplamientos existentes en el lagrangiano [6].

L N1 N2 S X
SU(2)L 2 1 1 1 1
U(1)Y 1/2 0 0 0 0
U(1)ℓ 1 −1 x 1− x 2x

Tabla 4.1: Asignación de cargas para el modelo. La primera fila enumera los campos: corres-
pondientes al doblete leptónico L, los neutrinos derechos N1, N2 y los escalares S, X. La
primera columna indica el grupo de simetŕıa bajo el cual se define cada carga.

En particular, el acoplamiento L̄HN c
1 , exige que la carga leptónica del neutrino N1 sea

qℓ[N1] = −1. Mientras que el acoplamiento S†N̄2N
c
1 , impone que qℓ[S] = 1− qℓ[N2]. Además,

el acoplamiento X†N̄ c
2N2 impone que: qℓ[X] = 2qℓ[N2]. A partir de estos acoplamientos, se

observa que existe un parámetro libre qℓ[N2] = x, el cual nos permite construir una asignación
de carga para el modelo, como se muestra en la tabla 4.1.
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4.2. Sector escalar

La adición de los nuevos campos escalares complejos S y X, implica la adición de sus
respectivos potenciales, de tal forma que,

VSX = −µ2
S|S|2 +

λS
4
|S|4 − µ2

X |X|2 + λX
4
|X|4 + λ5|S|2|X|2 + VI , (4.11)

donde los términos µ2 son términos bilineales positivos y λi son términos de interacción entre
los campos. Además, si queremos añadir un término de acoplamiento no trivial entre los
campos S y X, es necesario dar un valor al parámetro libre x, se optó por x = 3/5. De esta
forma, es posible añadir el siguiente término al potencial,

VI = λjXS
†3 + h.c. (4.12)

Al realizar tal asignación de carga, nos permite tener valores fijos para las cargas leptónicas
de todos los campos introducidos en el modelo, como se ilustra en la tabla 4.2.

L N1 N2 S X
SU(2)L 2 1 1 1 1
U(1)Y 1/2 0 0 0 0
U(1)ℓ 1 −1 3/5 2/5 6/5

Tabla 4.2: Asignación de cargas para el modelo con x = 3/5. La primera fila enumera los
campos: correspondientes al doblete leptónico L, los neutrinos derechos N1, N2 y los escalares
S, X. La primera columna indica el grupo de simetŕıa bajo el cual se define cada carga.

También, se debe añadir el potencial del Higgs y sus interacciones con los otros campos,

VHSX = −µ2
HH

†H +
λH
4
(H†H)2 + λHS|S|2H†H + λHX |X|2H†H, (4.13)

Para este potencial, se asumen los valores de mh = 125 GeV y λh=0.516 presentes en el
modelo estándar [17]. Por lo tanto, el potencial total tendrá la forma:

Vtotal = VHSX + VSX (4.14)

Considerando el potencial de la parte del Higgs y la parte de los escalares S y X [6].
A partir de este apartado, se utiliza el software Mathematica para la resolución de

expresiones matemáticas. Es posible hallar expresiones para los términos µ2
i utilizando las

ecuaciones de Tadpole es decir,
∂Vtotal
∂si0

∣∣∣∣
s0=0

= 0 (4.15)

donde, sT0 = (σh, σs, σx, χs, χx). Nótese, que en las ecuaciones de Tadpole no se está conside-
rando la parte cargada del Higgs χ+ Y χh, pues su resolución es trivial y no aporta información
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relevante a nuestro procedimiento. A partir de 4.15, se halla que,

µ2
H =

1

4
v2S

(
ϵ2HλH + 2(λHS + λHX ω

2)
)
, (4.16)

µ2
S =

1

4
v2S

(
2ϵ2HλHS + λS + 2ω(−3λJ + λ5ω)

)
, (4.17)

µ2
X =

v2S
4ω

(
−2λJ + 2(λ5 + ϵ2HλHX)ω + λXω

3
)
. (4.18)

donde se definen los parámetros,

ω = vx/vs (4.19)

ϵh = vh/vs (4.20)

Por lo tanto, con el reemplazo de estos valores de µi en nuestro potencial total 4.14, es posible
construir una matriz de masas utilizando,

∂2Vescalar
∂s0i ∂s

0
j

∣∣∣∣
s0i=s

0
j=0

≡ {M2}ij. (4.21)

La matriz Hessiana de 5× 5 se puede expresar como,

M2
s =

(
M2

es 0
0 M2

ps

)
(4.22)

Donde M2
es corresponde a la matriz de masa de los escalares σi

M2
es =


1

2
v2Sϵ

2
HλH v2SϵHλHS v2SϵHλHXω

v2SϵHλHS
1

2
v2S(λS − 3λJω) v2S

(
−3λJ

2
+ λ5ω

)
v2SϵHλHXω v2S

(
−3λJ

2
+ λ5ω

)
v2S(λJ + λXω

3)

2ω

 (4.23)

Mientras que, M2
ps corresponde a la matriz de masa de los pseudo-escalares χi.

M2
ps =

 9

2
v2SλJω −3

2
v2SλJ

−3

2
v2SλJ

v2SλJ
2ω

 (4.24)

4.3. Diagonalización de la matriz de masa

Es posible diagonalizar dichas matrices de masa, con el fin de hallar autoestados de masa
reales. Es posible diagonalizar por separado el sector escalar y el sector pseudo-escalar.
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4.3.1. Diagonalización M 2
ps

Para la matriz de masa de los pseudo-escalares, debemos hallar la matriz Rps unitaria, la
cual diagonalice M2

ps es decir,

M2
psd = RpsM

2
psR

T
ps (4.25)

Dicha matriz se puede calcular y tiene la forma,

Rps =
1√

1 + 9ω2

(
1 3ω

−3ω 1

)
(4.26)

De tal forma,

M2
psd =

0 0

0
v2sλJ(1 + 9ω2)

2ω

 (4.27)

Notese, que la diagonalización dio como resultado un pseudo-escalar sin masa, esto no es
extraño, se debe a que la ruptura espontánea de una simetŕıa global, conlleva la aparición un
bosón de Nambú-Goldstone sin masa. Mientras que el pseudo-escalar, al cual nos referiremos
como majorón, tiene una masa definida,

m2
J =

v2sλJ(1 + 9ω2)

2ω
(4.28)

4.3.2. Diagonalización M 2
es

Para la diagonalización de la matriz de los escalares, se considera que ϵh ≪ 1, por lo
tanto, es una diagonalización perturbativa por bloques, Donde habrán dos rotaciones que
diagonalicen M2

es,
M2

esd = R2R1M
2
esR

T
1R

T
2 (4.29)

Donde la forma de R1 puede venir dada por,

R1 =
1√
2

√
2 0 0
0

√
1 + ψ

√
1− ψ

0 −
√
1− ψ

√
1 + ψ

 (4.30)

Donde el parámetro ψ es una parametrización útil del ángulo de rotación ϕ que diagonaliza el
bloque pesado 2× 2. Se define como ψ = cos 2ϕ, lo que implica que,

cosϕ =

√
1 + ψ

2
, sinϕ =

√
1− ψ

2
, (4.31)

Además, con el fin de facilitar el proceso de la diagonalización, se realizaron los siguientes
cambios de variables en el software de Mathematica,

λx1 = λx +
λJ
ω3

(4.32)

λ51 = λ5 −
3λJ
2ω

(4.33)

λs1 = λs − 3λJω (4.34)

∆ = λx1 −
λ51
ω2

(4.35)
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Finalmente, se puede hallar el valor algebraico de ψ que diagonaliza el primer bloque de
nuestra matriz M2

es, esto imponiendo la condición de que el sub-bloque rotado se anule, es
decir, (M2

es)23 = 0, por lo tanto el valor de ψ viene dado por:

ψ = − ∆ω√
16λ251 +∆2ω2

(4.36)

Para la segunda rotación R2, que nos permita diagonalizar M2
es, se optó por la siguiente

matriz,

R2 =

 1 ϵhψs ϵhψx
−ϵhψs 1 0
−ϵhψx 0 1

 (4.37)

Las expresiones algebraicas para ψs y ψx (presentes en el anexo 5.8), se determinan de manera
que los elementos afuera de la diagonal, tengan dependencia de ϵh (o potencias mayores) y
por lo tanto perturbativamente, la matriz sea diagonal tras las rotaciones.

Una vez diagonalizada la matriz de masas para los escalares, se obtuvieron expresiones
para las masas al cuadrado,

m2
s1
=
v2hλh
2

A (4.38)

m2
s2
=

1

4
v2s

(
2λs1 − ω

(
−λ51 ω + λx1 ω +

√
16λ251 + (λ51 − λx1)2 ω2

))
(4.39)

m2
s3
=

1

4
v2s

(
2λs1 + ω

(
λ51 ω − λx1 ω +

√
16λ251 + (λ51 − λx1)2 ω2

))
(4.40)

m2
χ1

= 0 (4.41)

m2
J =

v2sλj(1 + 9ω2)

2ω
(4.42)

Donde, se cumple que ms1 < ms2 < ms3 . También, cabe mencionar que ms1 corresponde a la
masa del bosón de Higgs y A cuyo valor se encuentra en el anexo 5.9, es una combinación de
los distintos parámetros de interacción los cuales en conjunto deben dar un valor similar a 1,
esto para respetar el valor fijo de la masa del bosón de Higgs.

4.4. Espacio de parámetros

Con los resultados obtenidos, es posible construir un espacio de parámetros mediante
el software V Scode en lenguaje de Python dando rangos de valores plausibles a algunos
parámetros, esto con el fin de encontrar otros valores de parámetros con sentido f́ısico, esto
teniendo en cuenta distintas condiciones f́ısicas que se mencionarán caso a caso. En este
modelo, se asumirá el rango

10−6 ≪ x≪ 10−2 con 0 < x≪ 1 (4.43)

para distintos parámetros perturbativos como ϵh. Si bien, es posible ampliar el rango 4.43, esto
puede llegar a romper la escala de Planck para masas, lo que implicaŕıa tener en consideración
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Figura 4.1: Espacio de masas SI, con MN1 ≥ 105 GeV

efectos gravitacionales que no se pueden describir mediante nuestro modelo. Además, se
utilizará un total de N = 1.000.000 de muestras aleatorias, las cuales se definen mediante
el comando ”np.random.uniform()”, tales muestras, además deben pasar por el comando
”np.log10()”para que exista una distribución mas uniforme entre los valores. Este número de
muestras aleatorias se acotarán a medida de que se introduzcan distintas condiciones para
nuestros parámetros. Dentro del espacio de parámetros se tendrá en cuenta las relaciones,

|yi| ≤
√
4π (4.44)

0 < |λi| < 4π (4.45)

λij > −
√
λiλj (4.46)

las cuales corresponden a relaciones de perturbatividad para los Yukawas yi y acoplamientos
λi, además de la condición de estabilidad del potencial relacionada a los términos λij. En
adición a las condiciones anteriores, para tener un potencial estable se imponen las condiciones
para las ecuaciones de Tadpole 4.15 tal que, sean siempre positivos los valores de µ2

i . Además,
con el fin de tener un modelo que pueda coexistir correctamente con el modelo estándar,
se tomará que la masa del Higgs tendrá un valor de mh ≈ 125 ± 0.1 GeV y un valor del
acoplamiento λh = 0.516 [17].

4.4.1. Espacio de masas de Seesaw Inverso

El modelo de Seesaw inverso impone la condición µ≪ mD ≪M , por lo tanto, se puede
definir el parámetro perturbativo ϵm = µ

mD
, además de otro parámetro perturbativo, ϵM = mD

M
.

En este modelo, se va a definir un rango md basándonos que dentro del ME, los Yukawas yi
tienen un valor mı́nimo asociado al electrón de ye ≈ 2.9× 10−6 y un valor máximo asociado
al quark top yt ≈ 1. Por lo tanto, a partir de definir un rango de

10−6 ≤ yD ≤ 1, (4.47)

utilizando la ecuación 4.6 y el valor del VEV del Higgs fijo vs ≈ 246 GeV, se obtiene que,

10−4 GeV ≤ mD ≤ 102 GeV (4.48)
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Figura 4.2: Espacio de masas SI, con MN1 ≥ 106 GeV

lo que nos da un rango para mD. También, es posible definir la variable µ como, µ = ϵmmD,
esto con el fin de obtener un rango de valores para µ en función de nuestra relación de
perturbatividad y en función de nuestro rango para mD. Con estos rangos para mD y µ, es
posible construir el rango de valores para M , utilizando la ecuación 3.32 y considerando una
masa de neutrino mν = 10−10 GeV [17]. Además, se debe tener en cuenta que los neutrinos
diestros N1 y N2 deben ser lo suficientemente pesados para no poder ser detectados con
las limitaciones experimentales existentes, por ello, utilizando la ecuación 3.33, se agrega la
condición,

M +
m2
D

M
− µ

2
≥ 105 GeV (4.49)

Al considerar las condiciones de perturbatividad para los términos ϵ y la condición para la
masa del neutrino N1, se obtienen los siguientes valores máximos y mı́nimos en los cuales
estarán los valores de nuestras variables,

Parámetro Mı́nimo Máximo
md [GeV] 4.67 1.00× 102

M [GeV] 1.00× 105 9.86× 106

µ [GeV] 1.01× 10−4 9.85× 10−1

Es interesante notar que el rango de mD, a pesar de ser definido en principio como en la
ecuación 4.48, se termina acotando debido a las restricciones impuestas.

Análisis del espacio [mD,µ,M ]

Una vez definido los rangos de nuestras variables, es posible construir un espacio de masas
del modelo SI como se muestra en la figura 4.1.

En dicho gráfico se presenta el espacio de puntos en el plano (mD,µ) coloreado por la
variable log10M . Dichos puntos, satisfacen simultáneamente en su totalidad las condiciones
impuestas tales como, 4.49, mν = 10−10 GeV y las relaciones de perturbatividad ϵm y ϵM .
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Figura 4.3: Espacio [M, vs, ys]

El resultado muestra una forma triangular bien definida, lo que refleja las correlaciones
entre las variables µ, md y M , la forma triangular es consecuencia directa de la relación
de SI 3.32 considerando las relaciones perturbativas entre las masas. A partir de la figura,
se observa que la mayoŕıa de puntos para M se encuentran en el rango de 105 < M < 107

GeV, donde los valores mı́nimos de M se obtienen en las regiones en las cuales md y µ son
menores, mientras que los valores crecientes de µ y mD, tienen asociado un valor alto de M ,
esto siguiendo un crecimiento diagonal de color, debido a la dependencia M ∝ md

√
µ.

Además, es posible proponer otro valor mı́nimo de MN1 , tal que:

M +
m2
D

M
− µ

2
≥ 106 GeV (4.50)

Con el fin de observar la relevancia de la condición para el neutrino pesado en nuestro espacio
de parámetros. A partir de la condición 4.50, es posible construir un nuevo espacio de masas del
modelo SI 4.2. Dicho espacio, al igual que la figura anterior, muestra los puntos que satisfacen
simultáneamente las condiciones de mν = 10−10 GeV y las relaciones de perturbatividad para
las variables ϵm y ϵm. 4.3.

Al comparar la figura 4.2 con la 4.1, se puede observar que se mantiene el patrón triangular
y el patrón de color, sin embargo, existe una disminución considerable del área efectiva de la
figura 4.1 con respecto a la figura 4.2. Por lo tanto, es a partir de exigir una restricción de la
masa del neutrino pesado la que limita significativamente la cantidad de puntos válidos en
nuestro modelo.

Cabe mencionar que con el fin de tener una mayor de cantidad de puntos válidos, todas
las figuras exceptuando 4.2, utilizan la restricción de masa del neutrino pesado 4.49.

4.4.2. Espacio de Yukawas y VEVS

Con el fin de construir un espacio de parámetros relacionado al Yukawa ys, es conveniente
definir la variable vs =

246
ϵh

GeV, lo que nos permite generar valores aleatorios para vs dentro
del rango de perturbatividad de ϵh que se define en la ecuación 4.43 y del ĺımite inferior para
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Figura 4.4: Espacio [µ, vx, yx]

vs que nos otorga la ecuación 4.10. Por lo tanto, podemos determinar valores de ys utilizando
la ecuación 4.7 y considerando el ĺımite perturbativo de los Yukawas de la inecuación 4.44.
Con ello, se obtienen los rangos mostrados en la tabla 4.3. Tales rangos son totalmente válidos

Tabla 4.3: Rangos de ys y vs

Parámetro Mı́nimo Máximo
ys 5.82× 10−4 3.54

vs [GeV] 4.06× 104 2.46× 108

en el marco del ME y del SI. Además, nos permiten construir un espacio de parámetros
relacionando vs, ys y M , mediante la ecuación 4.7, como se muestra en la figura 4.3.

Análisis del espacio [M ,vs,ys]

La figura 4.3 muestra el espacio accesible en el plano (M, vs) coloreado por la variable
log10 ys. Los puntos representados corresponden a configuraciones f́ısicas que satisfacen en
conjunto las distintas condiciones impuestas.

El gráfico revela un espacio triangular el cual, se explica por la dependencia que existe
entre los parámetros evaluados mientras ys se mantiene en el rango perturbativo para los
Yukawas.

Dado que ys ∝M/vs, los valores más altos de M requieren valores crecientes de vs para
evitar que el acoplamiento exceda el ĺımite superior

√
4π. De manera similar, valores pequeños

de vs son solamente compatibles con valores de M pequeños. Es interesante notar que el
eje vertical vs cubre aproximadamente valores de 105 hasta 109 GeV, lo que muestra que el
régimen permitido favorece valores altos de vs, mientras que valores pequeños de vs quedan
totalmente excluidos pues induciŕıan valores de ys no perturbativos.

Analizando el patrón de color, se puede observar que cuando el factor M/vs ≈ 1, los
valores de ys son mayores teniendo el color amarillo, sin embargo, a medida de que vs sea
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cada vez mayor a M , los valores de ys toman colores más oscuros, lo cual es consecuente con
la relación ys ∝ M/vs. También es importante resaltar el truncamiento existe de la figura,
este truncamiento viene dado el valor máximo que puede tener M de alrededor de 107 GeV
en el eje horizontal por las condiciones de SI, si no existiera tal restricción para M , la figura
podŕıa alcanzar un patrón triangular más notorio.

Esta distribución ilustra la naturaleza inversa entre las relaciones de vs y el Yukawa, los
incrementos de vs a escala fija de M reducen la magnitud de ys, mientras que regiones donde
M crece más rápido que vs son rechazadas por la condición de perturbatividad, esto explica
que no hay puntos por debajo de la zona coloreada amarilla.

Por otro lado, a diferencia del caso de vs, el parámetro vx no tiene porque ser perturbativo
en nuestro modelo, por lo tanto, una forma de encontrar un rango plausible en el que habite
este parámetro, es mediante fijar el rango de yx, similar a como se realizó con yd,

10−6 ≤ yx ≤ 1 (4.51)

Una vez definido este rango para yx, mediante la ecuación 4.8 podemos determinar el rango
en el cual estará vx, como se muestra en la tabla 4.4.

Tabla 4.4: Rangos de yx y vx

Parámetro Mı́nimo Máximo
yx 1.00× 10−6 9.99× 10−1

vx [GeV] 1.71× 10−4 1.15× 106

Análisis del espacio [µ,vx,yx]

En la figura 4.4 se muestra el espacio permitido de nuestros puntos en el plano (µ, vx)
coloreado por log10 yx. A diferencia de la figura 4.3, acá se definió un rango plausible para yx
con el fin de encontrar valores para vx, y esto se ve reflejado por los valores de vx que tienen
una gran dispersión.

El área en el cual habitan los puntos válidos, tiene la particularidad de estar acotado
verticalmente por dos ĺıneas paralelas, las cuales vienen dadas por el ĺımites inferior y superior
en los cuales puede habitar el parámetro vx en función de la ecuación 4.8 y el rango escogido
para yx, √

2µ√
4π

≤ vx ≤
√
2µ

10−6
(4.52)

Analizando el patrón de color, se observa que los valores más altos de yx se concentran en la
región inferior izquierda del área, correspondientes a un valor de de µ/vx ≈ 1, mientras que
haćıa la parte superior derecha, cuando µ/vx ≪ 1 o µ/vx ≫ 1, el Yukawa disminuye, siendo
consistente con la dependencia inversa yx ∝ µ/vx.

4.4.3. Espacio de acoplamientos λi

A partir de la ecuación 4.42 y considerando la condición 4.45, es posible determinar valores
para λJ si fijamos un rango para mJ tal que,

10−5.5 GeV < mj < 10−5 GeV. (4.53)
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Figura 4.5: Espacio [mJ , ω, λJ ]

Tal rango, se escogió con el fin de que el Majorón pueda ser un candidato de materia oscura
estable, para que al desintegrarse pudiese ser visto en observatorios de rayos x. Por lo tanto,
se llega a los rangos mostrados en la tabla 4.5, en los cuales habitarán nuestros parámetros.

Tabla 4.5: Rangos de mJ , λj y ω.

Parámetro Mı́nimo Máximo
ω 1.43× 10−12 8.53× 10−1

mJ 3.16× 10−6 9.99× 10−6

λJ 1.40× 10−39 1.07× 10−20

Análisis del espacio [ω,mJ ,λJ ]

En la figura 4.5 se presenta el espacio permitido en el plano (ω,mJ) coloreado por el
valor de log10 λJ . Se puede observar que los valores 10−38 ≤ λJ ≤ 10−20 son muy pequeños
debido a la ecuación 4.42 y al rango en el cual definimos que está mJ . El gráfico muestra un
área esencialmente rectangular con gran densidad, la forma rectangular muestra ausencia de
correlaciones entre mJ y ω, lo que confirma que dentro del rango elegido para el majorón, los
filtros no generan restricciones que relacionen estos parámetros, sin embargo, estos parámetros
si regulan el valor de λJ , pues existe un patrón de color muy marcado.

La distribución de color muestra un patrón tal que, los valores más pequeños de λJ (región
violeta), se concentran en la parte izquierda del gráfico, donde ω es pequeño, a medida que
aumenta ω, el parámetro λJ crece, alcanzando sus valores máximos en la región derecha
de color amarillo. Este comportamiento es consecuencia de la relación λJ ∝ ωm2

j que sale
precisamente de la ecuación 4.42. Debido a que mJ vaŕıa relativamente poco por la condición
que se propuso, el parámetro dominante es ω el cual vaŕıa enormemente entre varios ordenes
de magnitud.

Todo esto explica la transición continua horizontal del color purpura hasta el amarillo a lo
largo de la figura.
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Figura 4.6: Espacio [ω,∆Ms, λ5]

Por otro lado, es posible obtener valores numéricos para las masas de los escalares 4.39
y 4.40, esto al dar rangos de valores aceptables para λs, λx, λhs, λhx y λ5, que cumplan las
condiciones de perturbatividad 4.45 y 4.46. Por lo tanto, se proponen los siguientes rangos,

10−6 < λi < 1 (4.54)

±10−10 < λhs < ±10−5 (4.55)

±10−10 < λhx < ±10−5 (4.56)

±10−8 < λ5 < ±100 (4.57)

Nótese que, los valores de λhs y λhx deben ser muy cercanos a cero, pues de esta forma, se
puede obtener el valor de la masa del Higgs sin desviaciones muy grandes, esto se deduce al
observar la ecuación de Tadpole para la masa del Higgs 4.15.

Por otro lado, el término λ5 no tiene tal restricción, por lo cual es posible ampliar su rango
de valores. Por lo tanto, teniendo en consideración las restricciones mencionadas, nuestras
variables quedan acotadas dentro de los siguientes rangos mostrados en la tabla 4.6. Al

Tabla 4.6: Rangos de acoplamientos del potencial escalar

Acoplamiento Mı́nimo Máximo Mı́nimo abs Máximo abs
λhs −6.77× 10−6 1.00× 10−5 1.00× 10−10 9.98× 10−6

λhx −1.00× 10−5 1.00× 10−5 1.00× 10−10 9.98× 10−6

λs 1.00× 10−6 9.99× 10−1 1.00× 10−6 9.99× 10−1

λx 1.00× 10−6 9.99× 10−1 1.00× 10−6 9.99× 10−1

λ5 −3.53× 10−2 1.00× 100 1.00× 10−8 1.00× 100

m2
s2 [GeV2] 1.57× 104 2.87× 1016 1.57× 104 2.87× 1016

m2
s3 [GeV2] 1.56× 104 2.87× 1016 1.56× 104 2.87× 1016

comparar las ecuaciones 4.39 y 4.40 podemos notar que al restar m2
s3
− m2

s2
se obtiene el

término P ,

P =
1

2
v2sωB con B =

√
16λ251 + (λ51 − λx1)2ω2 (4.58)
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el cual hace diferir los valores de las masas escalares.

Espacio [ω,∆Ms, λ5]

A partir de las ecuaciones 4.39 y 4.40, es posible obtener expresiones para las masas
escalares,

ms2 =
1

2
vs
√

2λs1 − ω(−λ51ω + λx1ω +B) (4.59)

ms3 =
1

2
vs
√

2λs1 + ω(λ51ω − λx1ω +B) (4.60)

Por lo tanto, podemos definir la variable ∆Ms = ms3−ms2 , con la cual es posible acceder a una
figura que relacione los parámetros ∆Ms, ω y λ5. La figura 4.6 representa el espacio permitido
en el plano (ω,∆Ms) coloreado por el acoplamiento log10 |λ5|. A partir de la definición de P
en la ecuación 4.58, utilizando la identidad notable de diferencia de cuadrados, se llega a la
ecuación 4.61,

∆Ms =
P

ms3 +ms2

(4.61)

por lo tanto, ∆Ms ∝ P lo que implica por extensión que ∆Ms depende principalmente del
parámetro ω. la figura 4.6 muestra una forma ovalada similar a una ṕıldora debido a la
estructura del parámetro B.

Dicha forma es en gran parte formada por el parámetro B, cuando ω toma valores muy
bajos, el término dominante de la ecuación 4.58 es λ251, por lo que,

B ≈ 4|λ51| ∆Ms ∝ ω|λ51| (4.62)

En tal régimen, ∆Ms crece prácticamente de manera lineal, mientras que para valores de ω
cercanos a la unidad, el término de la ecuación 4.58,(λ51 − λx1)

2ω2 toma relevancia, lo que
implica que,

B ≈ |λ51 − λx1|ω, ∆Ms ∝ ω2 (4.63)

Lo que permite tener una dependencia cuadrática de ω que se traduce en una figura curva.
Por lo tanto, la combinación de ambos comportamientos para los valores de ω muestran una
figura ovalada como se puede observar en el gráfico 4.6. A partir de la ecuación 4.33, se puede
observar que λ51 ≈ λ5 pues el término λj al ser extremadamente pequeño, vuelve irrelevante
la dependencia con ω del parámetro λ51. El gradiente de color, muestra que valores pequeños
de |λ51| asociados a valores morados producen valores reducidos de B, lo que fuerza ∆Ms a
situarse en regiones inferiores.

Por otro lado, valores grandes de |λ5| asociados al color amarillo, producen amplificados
de B, lo que implica tener valores mayores de ∆Ms.
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Caṕıtulo 5

Conclusiones y Trabajo futuro

5.1. Conclusiones

En este trabajo se estudió un modelo SI con ruptura espontánea de la simetŕıa U(1)ℓ,
con el objetivo principal de evaluar si esta extensión mı́nima del ME es capaz de generar
un término de masa para un neutrino activo, y a su vez, producir un pseudo-escalar como
candidato a materia oscura.

A partir de las simetŕıas del modelo, se construye el lagrangiano del modelo y el potencial
escalar. Lo que nos permitió construir las matrices de masa para los campos introducidos.
Esto permitió obtener expresiones algebraicas para los autoestados de masa de los escalares y
pseudo-escalares.

Eventualmente, con el fin de analizar sus comportamientos en función de los distintos
parámetros involucrados, se realizó un muestreo aleatorio de 106 puntos sujetos a restricciones
f́ısicas plausibles, tales como, la masa del neutrino, la masa del neutrino pesado, la masa del
Higgs, estabilidad del potencial y ĺımites perturbativos: para acoplamientos y para relación
de parámetros con diferencias en ordenes de magnitud.

Los resultados muestran que el modelo es válido para reproducir la jerarqúıa de masa del
mecanismo SI, lo que nos permite obtener un término de masa para un neutrino activo del
ME.

El análisis del gráfico 4.1 muestra la correlación existente entre las masas del modelo SI
[mD, µ,M ], donde se llega a un patrón triangular bien definido. Además, el tamaño de dicha
figura depende expĺıcitamente de la restricción dada por la masa del neutrino pesado, como
se observa al comparar las figuras 4.1 y 4.2.

Además, al observar las correlaciones entre mJ , ω = vx/vs y λJ presentes en el gráfico
4.5. Se observa que no existen correlaciones claras entre mJ y ω debido al patrón rectangular
marcado de la figura, no obstante, existe una correlación clara entre ω y λJ , que se ve reflejada
por el gradiente de color caracteŕıstico de la figura.

Por otro lado, fue posible hallar correlaciones claras entre las diferencias de masa de
los escalares f́ısicos ∆Ms = (ms3 − ms2), ω y λ5. Esto fue posible al definir la variable
P = (m2

s3
−m2

s2
) y ver su relación con ∆Ms. Lo que nos permitió entender la razón por la

cual la figura 4.6, obtiene una forma ovalada tipo ṕıldora con un gradiente de color marcado
por el acoplamiento λ5. Además, el análisis de los gráficos muestra correlaciones claras entre
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los Yukawas (yD, ys, yx), los VEVs (vs, vx) y las masas del SI (mD,M, µ), lo que se representa
mediante patrones triangulares y rectangulares, con ĺımites debido a cotas de perturbatividad
entre los Yukawas y ĺımites de masas máximos impuestos en el modelo.

También, Debido a la restricción impuesta de la masa del pseudo-escalar majorón 10−5.5 ≤
mj ≤ 10−5 GeV, el modelo es capaz de manera natural ofrecer un candidato viable para
materia oscura, que pudiese ser visto de manera observacional, esto mediante observatorios
de rayos X.

5.2. Trabajo Futuro

A pesar de la coherencia interna del modelo, existen ciertas limitaciones que podŕıan
trabajarse en una investigación futura tales como:

En el modelo se consideró solo un neutrino activo activo que adquirió masa, cuando
sabemos mediante las observaciones, que existen tres neutrinos activos. Esto se podŕıa
trabajar si añadimos más neutrinos diestros al modelo.

Es posible analizar los posibles canales de decaimiento para el majorón, para ratificar
de manera más precisa si funciona como candidato a materia oscura.

La ruptura espontánea de la simetŕıa global U(1)ℓ deja consigo un bosón de Nambú-
Goldstone, por este hecho, es posible imponer que la simetŕıa sea local, lo que permitiŕıa
introducir un nuevo campo vectorial que pudiese estudiarse como candidato a materia
oscura también.

Las figuras pueden tener formas aún más definidas al considerar una mayor cantidad de
muestras aleatorias.
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Anexo

5.3. Matrices de Gell-Mann:

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , (5.1)

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , (5.2)

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 . (5.3)

5.4. Constantes de estructura:

f 123 = 1, f 147 = f 246 = f 257 = f 345 = f 516 = f 637 = 1
2
, f 458 = f 678 =

√
3
2
. (5.4)

5.5. Transformación SO(2)

SO(2) consiste en todas las matrices ortogonales 2× 2 con determinante 1. Una transfor-
mación en SO(2) tiene la forma,

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
(5.5)

y se entiende como una rotación en dos dimensiones.[18]
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5.6. Lagrangiano LY

LY = −
3∑

i,j=1

3∑
α=1

[
Q̄αa
L i (Yu)ij H̃a u

α
R j + Q̄αa

L i (Yd)ij Ha d
α
R j

]
−

3∑
i,j=1

[
L̄aL i (Ye)ij Ha eRj

]
+ h.c.

(5.6)
Donde la suma i, j recorre las tres generaciones de fermiones, la suma α recorre los tres colores
(para los quarks).

5.7. Valores de ψx y ψs

Los valores de ψx, ψs se determinan con el fin de tener una matriz de masa diagonalizada,
por lo tanto se puede llegar a las expresiones anaĺıticas mediante Mathematica 5.8.

ψs =

2

[
λhs

√
2− 2∆ω√

16λ251+∆2ω2
+ λhx ω

√
2 + 2∆ω√

16λ251+∆2ω2

]
−2λs1 + ω

(
∆ω +

√
16λ251 +∆2ω2

) (5.7)

ψx =
−2λhx ω

√
2− 2∆ω√

16λ251+∆2ω2
+ 2λhs

√
2 + 2∆ω√

16λ251+∆2ω2

2λs1 + ω
(
−∆ω +

√
16λ251 +∆2ω2

) (5.8)

5.8. Valor del parámetro A

Producto de la diagonalización de la matriz del sector escalar, se obtiene que la masa del
bosón de Higgs es proporcional a una combinación de los distintos parámetros de interacción
añadidos al modelo, si aislamos el factor v2hλh/2 correspondientes al valor de la masa del
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Higgs en el ME, se obtiene que:

A =

[
− 8λ2hsλs1

λh
(
−8λ251ω

2 + 2λs1
(
λs1 + (λ51 − λx1)ω2

)) +
2λ2s1

−8λ251ω
2 + 2λs1

(
λs1 + (λ51 − λx1)ω2

)
− 8λ251ω

2

−8λ251ω
2 + 2λs1

(
λs1 + (λ51 − λx1)ω2

) − 8λ51λ
2
hsω

2

λh
(
−8λ251ω

2 + 2λs1
(
λs1 + (λ51 − λx1)ω2

))
− 32λ51λhsλhxω

2

λh
(
−8λ251ω

2 + 2λs1
(
λs1 + (λ51 − λx1)ω2

)) +
2λ51λs1ω

2

−8λ251ω
2 + 2λs1

(
λs1 + (λ51 − λx1)ω2

)
− 8λ2hxλs1ω

2

λh
(
−8λ251ω

2 + 2λs1
(
λs1 + (λ51 − λx1)ω2

)) +
8λ2hsλx1ω

2

λh
(
−8λ251ω

2 + 2λs1
(
λs1 + (λ51 − λx1)ω2

))
− 2λs1λx1ω

2

−8λ251ω
2 + 2λs1

(
λs1 + (λ51 − λx1)ω2

)]
(5.9)
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