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Resumen

El modelo estandar (ME) presenta un marco teérico suficiente para poder entender la
mayoria de la fisica de particulas, sin embargo, el ME tiene ciertas falencias, no explica como
los neutrinos adquieren masa ni explica el origen de la materia oscura.

Por ello, existen modelos mas alld del ME que buscan responder estas preguntas. En
este trabajo, se estudia un modelo tipo Seesaw inverso (SI) con ruptura espontanea de una
simetria lepténica global U(1),, cuyo propdsito es generar de manera natural términos de
masa para un neutrino activo del ME.

En este modelo se introducen en total 4 nuevas particulas al ME: dos neutrinos estériles
con quiralidad derecha N, N, y dos escalares S, X singletes de SU(2), con carga lepténica
y sin hipercarga, encargados de generar términos de masa luego del rompimiento espontaneo
de la simetria U(1),. La introduccién de los dos escalares al ME, modifica su potencial escalar,
introduciendo distintos parametros de interaccién A;; y A;, que determinan la estructura que
tendran los autoestados de masa de los escalares y la aparicion de un pseudo-escalar, el cual
se evalua como candidato a materia oscura.

A partir del lagrangiano del modelo, se construyen matrices de masa para los escalares
y los neutrinos, las cuales se diagonalizan mediante los software de Mathematica y VScode
en lenguaje Python, con el fin de obtener expresiones para los autoestados de masa, los
cuales estdn sujetos a restricciones fisicas tales como: la jerarquia de masa del modelo SI, la
estabilidad del potencial, respetar el valor de la masa del Higgs, respetar valores plausibles de
los Yukawas y los valores de expectacién del vacio (VEVs).

Con ello, al muestrear un total de 10 puntos aleatorios que cumplan con las diversas
restricciones, es posible acceder a diferentes espacios de pardametros que ilustran graficamente
las correlaciones que existen entre las variables.

Los resultados nos permiten identificar patrones y correlaciones entre las masas escalares,
los acoplamientos y los VEVS, revelando figuras bien definidas donde el modelo reproduce
una masa de neutrino compatible con las observaciones y un pseudo-escalar ligero candidato
a materia oscura.

El analisis de los resultados ratifica la consistencia interna del modelo, ademas de confirmar
su eficacia como una extensién minima del ME capaz de explicar la masa de un neutrino
mediante ruptura espontanea de la simetria.



Capitulo 1

Introduccion

1.1. Motivacion

El ME de la fisica de particulas constituye un marco tedrico exitoso para describir las
interacciones fundamentales y las particulas elementales conocidas, su estructura basada en
el grupo SU(3)¢ x SU(2), x U(1)y permite explicar fenémenos electromagnéticos, débiles,
fuertes, tanto como la generacién de masa de distintas particulas, y a su vez, la prediccién de
particulas recientemente descubiertas experimentalmente, como el bosén de Higgs [1].

Sin embargo, el ME presenta limitaciones importantes:

= Masa de neutrinos: EI ME, no tiene incorporado un mecanismo por el cual, los neutrinos
adquieran masa, dejando a estas particulas como componentes no masivos, esto a pesar
de que distintas experimentaciones realizadas en el SNO (Sudbury Neutrino Observatory)
[2] o el super Kamiokande [3], muestran de manera inequivoca que mediante el mecanismo
de oscilacion de sabor, los neutrinos si tienen masa.

= Materia oscura: El ME, no tiene incorporado ningun tipo de particula que permita
explicar la materia oscura. Esto a pesar de que constituye aproximadamente un 85 % de
la materia del universo [1].

Por lo tanto, es necesario realizar una extension al ME con el fin de resolver estas limitaciones.

Una de las extensiones mas estudiadas para dar masa a los neutrinos es el mecanismo tipo
Seesaw, con sus distintas variantes [5]. Estos modelos consisten en la adicién de neutrinos con
quiralidad diestra y singletes del ME que se acoplen a los neutrinos activos, generando asi sus
términos de masa.

Sin embargo, algunos de estos mecanismos Seesaw presentan una refutabilidad desafiante
desde el punto de vista experimental y/o requieren escalas de energia muy altas como ocurre en
el Seesaw tipo 1. Por ello, una alternativa viable puede ser el mecanismo de seesaw inverso (SI),
el cual permite generar términos de masas pequenos para neutrinos activos sin la necesidad de
postular neutrinos excesivamente pesados al modelo. No obstante, el SI solo permite introducir
términos de masa los cuales carecen de un origen dinamico.

Una forma de justificar la aparicién de estos términos de masa consiste en considerar la
simetria global de ntimero lepténico U(1), como una simetria fundamental del lagrangiano
del ME, la cual, al romperse espontaneamente mediante la introduccién de nuevos campos



escalares que adquieren valores de expectacion del vacio distintos a cero, generan naturalmente
términos de masa para los neutrinos del ME.

Esta alternativa resulta ser satisfactoria si consideramos ademaéas que, tras la ruptura
espontanea de la simetria, se generan dos pseudo-escalares, de los cuales uno adquiere masa
de manera natural, y podria ser un candidato a materia oscura.

Por lo tanto, la construccion de este tipo de modelo responde dos problematicas que el
ME por si solo no puede resolver.

En este contexto, el presente trabajo estudia un modelo Seesaw inverso con ruptura
espontanea de la simetria lepténica global U(1), el cual introduce dos neutrinos estériles
diestros Ni,N, y dos campos escalares singletes S, X que actiian como singletes dentro del
grupo de gauge que describe el ME.

1.2. Hipodtesis

En este trabajo se propone que las masas de los neutrinos pueden generarse mediante un
mecanismo S, si la simetria U(1), accidental, se toma como una simetria fundamental que
debe respetarse dentro del ME. De tal forma que, al romperse espontaneamente mediante
valores de expectacion del vacio distintos de cero, para los dos escalares singletes, permita de
manera natural introducir términos de masa para al menos un neutrino activo del ME.

Ademas, el pseudo-escalar asociado a tal ruptura, podria considerarse como un candidato
viable a materia oscura, si imponemos condiciones restrictivas para su masa y sus acoplamientos

>\iy)\ij [ ]

1.3. Objetivos del trabajo

Objetivo general

Analizar el modelo SI con ruptura espontanea de la simetria U,, determinando valores
plausibles para las jerarquias de masas asociadas al modelo SI y expresiones para los auto-
estados de masa de los escalares y el pseudo-escalar, como funciones de sus parametros de
interaccién \;.

1.3.1. Objetivos especificos

= Construir el lagrangiano del modelo, al incorporar los neutrinos diestros y los campos
escalares S 'y X con una asignacién de carga lepténica para respetar la simetria U(1),.

= Construir el potencial escalar del modelo, introduciendo por consecuencia, varios parame-
tros de interaccion entre los nuevos campos y el Higgs del ME.

= Diagonalizar las matrices del sector escalar, con el fin de identificar autoestados de masa
fisicos y analizar sus dependencias paramétricas.

= Construir y analizar espacios de parametros correspondientes a: los autoestados de masa
del modelo SI, los acoplamientos de Yukawa relacionados al modelo SI, los valores de

3



expectacion del vacio de los dos campos escalares S y X, los acoplamientos A; y A;;, los
autoestados de masa de los escalares y el pseudo-escalar resultante.

1.4. Estructura de la tesina

Este trabajo se organiza mediante cinco capitulos. El primer capitulo consta de la intro-
duccién del trabajo, se presenta la motivacion de la investigacién, la hipotesis general del
trabajo, el objetivo general y los objetivos especificos de la tesina y finalmente la estructura
de la misma.

El segundo capitulo llamado Modelo Estandar, se presentan conceptos fundamentales
relacionados a la fisica de particulas con el fin de establecer las bases que constituyen al ME
como tal, para finalmente explicar en que consiste el ME e introducir su lagrangiano.

El tercer capitulo llamado Neutrinos, se revisa la historia del neutrino y el fenémeno de
oscilacion de neutrinos como prueba inequivoca de que los neutrinos tienen masa.

En cuarto capitulo llamado modelo Seesaw Inverso con ruptura esponténea de U(1),, se
construye el lagrangiano del modelo, se analiza el sector escalar, se diagonalizan las matrices
de masa para el sector escalar y ademas, se exploran numéricamente patrones y relaciones
entre masas, acoplamientos, VEVS.

En el quinto y iltimo capitulo, se presentan las conclusiones principales del trabajo y se
comentan posibles lineas futuras de investigacion.

Finalmente, el documento incluye una secciéon de bibliografia, donde se listan las referencias
utilizadas en el trabajo, y un Anexo, en el cual se proporcionan expresiones auxiliares, calculos
complementarios y material adicional necesario para comprender el modelo.



Capitulo 2

Modelo Estandar

El modelo estandar es una teoria cuantica de campos que describe las particulas funda-
mentales que constituyen la materia y las interacciones que actiian sobre ellas. Una teoria
cuantica de campos contiene un marco teérico que combina principios de la mecanica cuantica
con principios de la relatividad especial, anadiendo el concepto de campo. Las particulas se
consideran como excitaciones cudnticas de campos (espinoriales, escalares, vectoriales); por lo
tanto una teoria cuantica de campos considera a los campos como elementos fundamentales
que impregnan el espacio tiempo y evolucionan en este [7].

En la naturaleza, hay dos tipos de particulas fundamentales, clasificadas segtin el valor de su
espin, los fermiones y los bosones. Cada una tiene un comportamiento dindmico caracteristico,
debido a las propiedades del campo que las describen.

2.1. Fermiones

Un tipo de particula fundamental es el fermién; se caracteriza por cumplir con el principio
de exclusion de Pauli y por lo tanto, obedecer la estadistica de Fermi-Dirac ademés de contar
con espin semi-entero [3].

Para el caso de particulas con espin 1/2; la dindmica se rige por la ecuacién de Dirac, que
es una ecuacion la que hace compatible la descripciéon cuantica de una particula con espin,
junto con la relatividad especial de Einstein. La ecuacién de Dirac viene dada por:

(170, — m) = 0 (2.1)

Donde m es la masa de la particula; d, es el operador derivada parcial, definido como
0, = 0/0z*; 1 es un campo espinorial de cuatro componentes (espinor); = 0,1,2,3 es el
indice asociado a la métrica de Minkowski; y v* corresponde a las matrices de Dirac que
satisfacen el dlgebra de Clifford {7#,~7"} = 2n*”. Una forma de describir al espinor es mediante

la representacién quiral:
77Z}L>
= 2.2
v <¢R (22)

Donde v, corresponde a la componente quiral izquierda y 1z a la componente quiral
derecha. Cabe mencionar que, en el transcurso del documento se optara por utilizar la notacién



de unidades naturales, es decir, ¢ = A = 1. El término +*, en la representacién quiral/Weyl,

se expresan como:
0 ot
H—
v = ) (2.3
donde o* son las matrices de Pauli,

XD R X H

También es conveniente mencionar la matriz 7°,
—I 0
P = A0 2B — ( §x2 I ) : (2.5)
2x2

pues con esta matriz podemos definir los proyectores derechos e izquierdos,

I+
2 2

Pr (2.6)

los cuales permiten descomponer un espinor en sus componentes de quiralidad izquierda y
derecha.

Yr=PrY  Wp =Py (2.7)
permitiendo representar un espinor en sus partes quirales,
Y =v¢r+YrL (2.8)

Es posible definir densidades lagrangianas asociadas a distintos tipos de campos, siempre
y cuando, sea posible reconstruir construir la ecuacién de movimiento asociada al campo,
mediante el uso de la ecuacion de Euler-lagrange:

oL oL .
(% (m) = 87(51-7 (Z: 1,2,3,...) (29)

donde L corresponde a la densidad lagrangiana; y ¢; corresponde a los campos del sistema.
Por lo tanto, se define el lagrangiano de Dirac:

L =iy 9 — m i (2.10)

Donde tratamos ¢ v ¥ = 11~1° como campos independientes. Al aplicar la ecuacién de Euler-
Lagrange 2.9 a cada uno de ellos, se obtienen las ecuaciones de movimiento correspondientes
a 1 y su adjunta 1, de esta manera se recupera la ecuaciéon de Dirac 2.1 [9].



2.2. Bosones

Otro tipo de particula fundamental en la naturaleza son los bosones; se caracterizan por
no obedecer el principio de exclusion de Pauli y regirse por la estadistica de Bose-Einstein y
ademas, cuentan con espin entero [10]. El caso mas simple es el bosén cuyo espin es igual a
cero, el cual se denomina como bosén escalar, la dindmica de este tipo de particula se describe
mediante la ecuacién de Klein-Gordon (KG),

("0, +m*)p =0 (2.11)

donde ¢ es un campo escalar con masa m. La ecuacién de KG se obtiene al imponer que la
relacién relativista de energia y momento se mantenga en el régimen cudntico [11]. Ademés, a
partir del lagrangiano de KG,

Lra = 5(0,0)(0"6) — S5 (2.12)

es posible recuperar la ecuacién de movimiento 2.11, si se aplica la ecuacién de Euler-Lagrange
2.9 al lagrangiano de KG 2.12.

El bosén cuyo espin es igual a uno se denomina bosén vectorial; la dindmica de este tipo
de particula se describe mediante la ecuacion de Proca,

0, F" +m?A” =0,  con FM =09g'A” — 9" A", (2.13)

donde A* es un campo vectorial con masa m. Al igual que en los casos anteriores, existe un
lagrangiano asociado a estos campos,

1 1
Lproca = — Z_l F;WF'[W + 5 m? AMAM, (214)

el cual, si lo insertamos en la ecuacién de Euler-Lagrange 2.9, obtenemos su ecuacion de
movimiento asociada; en este caso, la ecuacién de Proca 2.13 [9].

2.3. Teoria de grupos y simetrias

Una simetria es una transformacion que actia sobre un sistema, dejandolo invariante.
Esto implica que, después de aplicar la transformacion, todas las cantidades fisicas relevantes
permanecen indistinguibles de su configuracion original. Gracias al teorema de Noether,
sabemos que cada simetria (continua y diferenciable) de la naturaleza conlleva una ley de
conservaciéon o al revés, que cada ley de conservaciéon refleja una simetria subyacente como
se ilustra en la tabla 2.1. Por ejemplo, las leyes de la fisica son simétricas con respecto
a traslaciones temporales, el teorema de Noether establece que esta invarianza implica la
conservacion de energia, si un sistema es invariante ante traslaciones espaciales, entonces el
momento lineal es conservado, si un sistema es simétrico ante rotaciones alrededor de un
punto, entonces el momento angular es conservado. De manera similar, la invarianza de las
leyes de Maxwell ante transformaciones de gauge, conlleva la conservacion de carga eléctrica.



Simetria Ley de conservacion
Traslacién en el tiempo | Energia

Traslacion en el espacio | Momento lineal
Rotacién Momento angular
Transformacién de gauge | Carga

Tabla 2.1: Relacién entre simetria y ley de conservacién (Teorema de Noether).

Es importante resaltar la relacion que hay entre la teoria de grupos y las simetrias pues,
de manera general, la teoria de grupos proporciona un marco teérico matematico adecuado
para clasificar las simetrias fisicas; Cada conjunto de transformaciones (representadas como
matrices) que puede dejar invariante un sistema forma un grupo que tendré ciertas propiedades,
dependiendo de la naturaleza de la simetria en cuestién [9].

Grupos de Lie

Un grupo de Lie es un grupo tal que las operaciones de multiplicacién e inversa, dependen
de manera continua y diferenciable de uno o mas parametros reales. Si un sistema, al aplicarle
las transformaciones asociadas a los elementos de un grupo de Lie, permanece indistinguible
del sistema original, se dice que el sistema tiene una simetria continua con respecto a ese
grupo. Existen varios tipos de grupos continuos en fisica que pueden senalar una simetria
subyacente

» Grupo U(n):Corresponde a la coleccién de todas las matrices unitarias n x n, es decir, que
cumplen que la matriz inversa corresponde a la matriz conjugada hermitica U~! = UT.

= Grupo O(n): Corresponde a la coleccién de todas las matrices n x n ortogonales, es
decir, que sus inversas son equivalentes a sus transpuestas O~! = O7.

» Grupo SU(n): Corresponde a la colecciéon de todas las matrices unitarias y especiales
n X n , que una matriz sea especial quiere decir que su determinante es igual a uno.

= Grupo SO(n): Corresponde a la coleccién de todas las matrices ortogonales y especiales
n xn [9].

Existen tres grupos de Lie relevantes en fisica de particulas para explicar las interacciones
fundamentales:

» U(1),: Siguiendo la definicién anterior del caso genérico U(n), las matrices 1 x 1
que cumplen con la definiciéon de grupo especial, se expresan como una exponencial
multiplicada por una fase real:

U=¢ef  con UU=1I (2.15)

Por lo tanto, si un sistema queda invariante ante tal transformacion, implica que tiene
simetria U(1).

emap = qp (2.16)



» SU(2),: Cualquier matriz unitaria puede ser escrita en general, de la forma
U=eH (2.17)

Donde H es hermitica H' = H, la matriz hermitica 2 x 2 mas general puede ser expresada
en terminos de cuatro ntimeros reales aq, as, as, 0,

H=0I+7d (2.18)

Donde I es la identidad 2 x 2 y 7y, 79, 73 son las matrices de Pauli presentes en las
ecuaciones 2.4 (en este caso, se usa la notaciéon 7 en vez de o pero son las mismas
matrices). Cualquier matriz unitaria 2 X 2 puede expresarse como:

U = e'f=ei™ (2.19)

Para cumplir con la condicion de matriz especial detU = 1, 8, debe ser igual a cero. De
esta forma, si un sistema es invariante ante una transformacién SU(2) se dice que tiene
simetria SU(2); esto es:

Ty = 1) (2.20)

» SU(3),: Siguiendo la definicién de un grupo unitario n X n, es posible construir las
matrices unitarias 3 X 3. Una matriz hermitica 3 x 3 puede expresarse en términos de
nueve parametros reales a,,as ... ag,0:

H=0I+Xa (2.21)

donde [ es la matriz identidad 3 X 3 y Ay, A9, ..., Ag, son las matrices de Gell-Mann
presentes en el anexo 5.3; y el producto punto denota

Aa= )\1@1 + )\1&1 4+ 4 )\gag (222)

esto implica que,
U = elf=eitas (2.23)

Para cumplir con la condicién de matriz especial detU = 1, 6, debe ser igual a cero.
Entonces, si un sistema es invariante ante una transformacion,

ey = ) (2.24)
se dice que tiene simetria SU(3) [9].

También existen simetrias discretas, es decir que describen cambios no continuos en un sistema,
es conveniente mencionar directamente las simetrias discretas importantes para una teoria
cuantica de campos:

= Paridad: Antes de 1956, se daba por garantizado que las leyes de la fisica eran
ambidiestras es decir, la imagen espejo de cualquier proceso fisico representaba un
proceso completamente posible, sin embargo sabemos que esto no es cierto debido al



experimento de Wu en 1957 [12]. La simetria de paridad es una transformacién P que
invierte las coordenadas espaciales de un sistema fisico

Pi(z) = P(-x) (2.25)

Ademas se cumple P? = I,.,. Si un sistema fisico permanece invariante ante tal
operacion, se dice que conserva paridad, en lenguaje de teoria de grupos podemos pensar
que el grupo paridad consiste en el operador P y la matriz I,,«,

= Conjugacion de carga: Similar al caso anterior, existe un operador C' que cambia el
signo de todas las cargas de los campos de un sistema. Puede entenderse como que el
operador paridad transforma una particula en su correspondiente antiparticula.

Cip = (2.26)

Ademas el operador cumple C? = I,.,. Sistemas que queden invariantes ante tal
transformacién se dice que son simétricos ante conjugacién de carga

= Reversion temporal: La simetria temporal esta asociada al operador 1" que cambia el
signo a la componente temporal de un sistema de la siguiente forma

~

T(z,t) = P(z, —1) (2.27)

Noétese que el operador es anti lineal, por eso si consideramos campos cuanticos de-
bemos conjugar el campo si operamos T'. Sistemas que queden invariantes ante tal
transformacion se dice que son simétricos ante reversion temporal [J].

2.4. Teorias de gauge

Las teorias de gauge describen todas las interacciones fundamentales de la fisica de
particulas (exceptuando la gravedad); si tomamos, por ejemplo, la transformacién U(1),
definida anteriormente, nuestra fase 6 se entiende como una fase global, esto quiere decir que
no depende de las coordenadas de espacio-tiempo x, = x. En cambio, si § = 0(x), se dice que
la fase es local. Si un sistema queda invariante ante una transformacion cuya fase depende de
x, se dice que cumple con el principio de invarianza local de gauge. Una teoria que cumple
con dicho principio se denomina teoria de gauge.

2.4.1. Invarianza local de gauge U(1)

Tomemos como ejemplo el lagrangiano de Dirac presente en la ecuacion 2.10, se puede
notar que dicho objeto es invariante ante la transformacién U(1) = ¢¥, no obstante, si 6
depende de las coordenadas espacio temporales x, el lagrangiano no es invariante, pues debido
al operador derivada parcial, se introduce un nuevo término al lagrangiano, tal que:

L — L —0,00y" (2.28)
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Por lo tanto, si consideremos la siguiente transformacién:
0(z)

U, = e @ donde Mz)=— .

(2.29)

donde ¢ es una constante de acoplamiento que fija la intensidad con la que el campo vectorial
B,, interactia con los campos que transforman bajo la simetria U(1),. Para imponer invarianza
local, se reemplaza la derivada ordinaria del lagrangiano por la derivada covariante,

D, =0, + i¢B, (2.30)

donde se introduce un nuevo campo vectorial B, sin masa.

El lagrangiano de Dirac por lo tanto, se le debe introducir la parte cinética de este
nuevo campo vectorial, y como se mencioné anteriormente, los campos vectoriales tienen un
lagrangiano de Proca descrito por la ecuacion 2.14. De esta forma el lagrangiano de Dirac con
invarianza local:

- 1
L=yEy'D, —m)y — 1 B*"B,, con B, =0,B,—0,B,. (2.31)

De esta manera se define un nuevo lagrangiano que es invariante localmente ante U(1), [9].

2.4.2. Invarianza local de gauge SU(2)

Sea la transformacién SU(2) local de la forma,

N7 - EI: T
S =e 9@ con X(z) = _d@) (2.32)
g
donde g corresponderia a una constante de acoplamiento. Suponiendo que tenemos dos campos
con espin 1/2, 1y y 1, que tienen la misma masa m, el lagrangiano del sistema se puede
escribir de manera compacta utilizando que:

Y = @;) (2.33)

L =iy 9 — mipp
es idéntico al lagrangiano de Dirac presente en la ecuacion 2.10, sin embargo, ahora v es un
vector columna de dos elementos. Tal objeto es invariante ante una transformacion SU(2)
globalmente, es posible hacer que nuestro lagrangiano sea invariante localmente si redefinimos
la derivada ordinaria como una derivada covariante de la forma:

por lo tanto, el lagrangiano,

D,=08,+ig7 W, 2.34
H o H

Introduciendo, como consecuencia, tres nuevos campos vectoriales W, = (W}, W§', W) sin
masa, los cuales tienen sus respectivos lagrangianos de Proca sin masa asociados, que se deben
introducir al lagrangiano inicial, de esta forma:

L= § (V"D — m) b — iwgyww (2.35)
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Donde el indice a = 1,2, 3, es para los tres campos vectoriales W,. Cabe mencionar que la
invarianza local nos obliga a redefinir el producto de los tensores W*” de la forma:

We, = 0.We —,W + g™ WWg (2.36)

donde €¢ corresponde al tensor de Levi-civita. De esta forma el lagrangiano resultante, es

invariante localmente ante una transformacién SU(2), y, representa dos campos de Dirac con
igual masa en interaccién con tres campos vectoriales sin masa.

2.4.3. Invarianza local de gauge SU(3)

Continuando con la misma idea del caso anterior, un lagrangiano de Dirac que describe
tres campos de igual masa 1., ¥4, ¥4, se pueden condensar en un solo vector columna:

Vr
L= i@v“@uw —mapp  con Y= | (2.37)
Uy

Dicho lagrangiano es invariante ante una transformacién global SU(3). Si queremos imponer
invarianza local, consideremos la siguiente transformacion:

S = 93D con gy = — ) (2.38)
G

Donde g. corresponde a una constante de acoplamiento, luego, reemplazamos la derivada
ordinaria del lagrangiano por su derivada covariante:

D,=08,+ig. -G, (2.39)

Lo que introduce 8 campos vectoriales G, que luego veremos que corresponden a los gluones.
Estos 8 nuevos campos introducen sus términos cinéticos de Proca al lagrangiano, resultando
en:

(s 1 a apv
L=vY(y'"D,—m)y — 2 G, G (2.40)
Donde se debe redefinir el tensor que describe el término cinético de los campos vectoriales,
G, = 0,Gy — 0,G), + ge fabCGZGf, (2.41)

donde, fo¢ corresponde las constantes de estructura del grupo SU(3) presentes en el anexo
5.4. De esta forma, el lagrangiano resultante es invariante localmente ante una transformacion
SU(3), vy, representa tres campos de Dirac con igual masa en interaccién con ocho campos
vectoriales sin masa. [J]

2.5. Ruptura espontianea de la simetria
Sea un lagrangiano de la forma,
L = 5(0,01)(0"¢1) + 5(0u02)(0"P2) + 513 (67 + 63) — TA° (81 + ¢3)° (2.42)
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Donde, se describe dos campos escalares ¢1,¢o v 1 con A son dos constantes reales. Tal
lagrangiano es invariante ante ante transformaciones de SO(2) descritas en el anexo 5.5.
Es posible, expresar su energia cinética como,

K = 1(0,61)(0"$1) + 5(0u02)(0"62) (2.43)
menos su energia potencial,
U=~ + 6B) + DN + 02)? (2.44)
Al minimizar este potencial respecto a ¢? y ¢3, se obtiene que su minimo ocurre para:
2
OF i T D5 = % (2.45)

Donde, de manera arbitraria, es posible escoger un estado fundamental o valor de expectacion
del vacio (VEV) distinto a cero, que permita minimizar el potencial, tal que:

1.0 = % S, =0 (2.46)
Ademas, es posible introducir nuevos campos que son fluctuaciones alrededor de este VEV,
nz%—% £ =02 (2.47)

Se puede reescribir el lagrangiano en funcién de estos nuevos campos,
£ = [3@m) @) - 2] + [40,6)(0"€)] (2.48)
- [W\(US + &%) + (' + €0+ 277252)} + (2.49)

Donde se puede observar que hay un término de masa para 7,

m, = V2 (2.50)

el cual, se deduce de la comparacion con el lagrangiano de KG presente en la ecuacién 2.12,
no obstante el campo & queda sin masa, este tipo de campos se denominan bosones de Nambu-
Goldstone, siempre aparecen cuando una simetria global continua se rompe espontaneamente,
en este caso, la simetria que se rompié esponténeamente fue SO(2), pues podemos notar que
el lagrangiano 2.49 ya no es simétrico ante tal grupo. Se dice que la ruptura fue espontanea
porque no hubo un agente externo que la rompiera; se rompe al escoger un valor arbitrario de
expectacién del vacio (VEV) [9].

2.6. Mecanismo de Higgs

El mecanismo de Higgs consiste en la ruptura espontanea de la simetria, pero en el caso
de una simetria invariante localmente, como en el caso de las simetrias de gauge. Es de
hecho mediante este mecanismo, por el cual todas las particulas del modelo estandar masivas

adquieren su masa, tales como: todos los fermiones cargados y los bosones vectoriales W= y
Z°.
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2.7. El modelo estandar

El modelo estandar es la teoria que actualmente describe las particulas fundamentales que
constituyen la materia y las interacciones que actian sobre ellas. Se basa principalmente en
una teoria cuantica de campos relativista, con varias simetrias locales de gauge involucradas,
que se pueden condensar en un unico grupo, el grupo del ME;,

SU(?))C X SU(Q)L X U(l)y

Este grupo de simetrias, fueron descritas de manera general en los apartados de invarianza
local de gauge 2.31, 2.35 y 2.40. Para el caso particular del grupo del ME, SU(3). tiene
asociada la constante de acoplamiento g., SU(2), la constante de acoplamiento g y para el
grupo U(1)y estd asociada la constante de acoplamiento ¢'. Los subindices C,L e Y en el
grupo indican la carga de color, la quiralidad zurda sobre la que actia SU(2) y la hipercarga
asociada a U(1)y respectivamente. Para el caso de la hipercarga y tercera componente de
isoespin, existe la relacion de Gell-Mann-Nishijima.

Y
Q=L+ (2.51)
La cual nos relaciona la carga eléctrica de una particula, con su tercera componente de isoespin

e hipercarga.

2.7.1. Leptones

Dentro del ME, existen seis tipos de leptones, los cuales son particulas fermiénicas que se
pueden separar por tres generaciones como se muestra en la tabla 2.2, donde cada generacion
leptonica constituye un doblete leptonico izquierdo, cuyo lagrangiano que lo describe es
invariante ante transformaciones del grupo SU(2). x U(1)y, dicho doblete se conforma de una
particula cargada eléctricamente con quiralidad zurda, como e~, y—, 7~ y su neutrino asociado
zurdo, v, v, v;. Dichos dobletes, poseen carga de isospin I = % e hipercarga Y, = —1.

L= (”“> i=1,2,3. (2.52)
€ir

Donde © = 1, 2, 3 corresponde a las generaciones leptonicas presentes en la tabla 2.2. Dentro
del doblete, la componente asociada al neutrino tiene valor de la tercera componente de
isospin I3(v;, ) = +1/2 mientras que la componente cargada tiene como tercera componente
de isospin I3(e;, ) = —1/2, lo que mantiene coherencia con la relacién 2.51. Ademds, existen
leptones cargados eléctricamente con quiralidad diestra, pero son singletes de SU(2),, con
isospin nulo e hipercarga Y,r = —2, en este documento se escribirdn de la forma:

e, singlete lepténico diestro (2.53)
donde i, en este caso, representa a los sabores leptonicos que corresponden a electronico,
muoénico y taudnico. E1 ME no contiene neutrinos diestros, por lo tanto, no existen singletes

diestros del tipo neutrino. También, cabe mencionar que los leptones no poseen carga de
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Lepton [ Q [ I, |V [L.|L, | L
Primera generacion

er, —1]-1/2]|-1, 1100

eR -1 0 -2 1

Vel 0O |+1/2] -1 1|00

Sequnda generacion

S
e}

pr | —1]—-12[-1] 0] 10
ug | =11 0 |[—2lo0]1]o0
v | 0 [ 4+1/2 =110 ] 1|0

Tercera generacion
TL —1|-1/2|-1,0 1] 0|1
TR -1 0 21001
VrL 0O |+1/2]| =110 |01

Tabla 2.2: Clasificacién lepténica del Modelo Estandar, incluyendo las cargas @, I3, Y y los
nimeros lepténicos.

color, por lo tanto, se consideran singletes con respecto al grupo SU(3)¢. Cada leptén, tiene
numeros cuanticos asociados en adicién a los ya mencionados, tales como su nimero lepténico
(electrénico, muénico y taudnico) y carga eléctrica .

A su vez, existen 6 leptones mas correspondientes a las antiparticulas asociadas a las
particulas mostradas en la tabla 2.2, cuyos niimeros cuanticos asociados son los mismos, pero
con signo cambiado.

2.7.2. Quarks

También existe otro grupo de fermiones, los quarks, hay seis tipos de sabores de quarks,
los cuales se clasifican por el valor de sus niimeros cuanticos asociados a los sabores up, down,
strange, charm, top y bottom. Al igual que los leptones, forman dobletes zurdos de SU(2),
entre generaciones, dichos dobletes tienen hipercarga Yy, = 1/3 e isospin I = 1/2,

4, = (Z"L) i=1,2,3. (2.54)
iL

donde ¢ = 1,2, 3 representa las generaciones de quarks presente en la tabla 2.3. Donde, de

manera similar a los leptones, se tienen los valores de la tercera componente de isospin,

I3(u;, ) = +1/2, mientras que I3(d;,) = —1/2. También, existen quarks que son singletes

diestros del grupo SU(2),

4
U;,, con hipercarga Y, = - d

2
3 ins con hipercarga Y, = —= (2.55)

3

Cabe mencionar que, al igual que en el caso de los leptones, existen las antiparticulas de los
quarks, que son el mismo quark pero con sus nimeros cuanticos mostrados en la tabla 2.3
invertidos en signo. Otra particularidad de los quarks es que, a diferencia de los leptones, los
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quarks portan la carga de color, la cual se clasifica en tres tipos: rojo, verde y azul. Por lo
tanto, los quarks dentro del ME se consideran tripletes de SU(3)¢ esto es,

qr
b

Donde i, en este caso se refiere a los seis sabores de quarks existentes. Esto implica que el
numero total de quarks pertenecientes al modelo estandar es de 36.

Quark | Q | Iyp [ Lr| YL | Ya
Primera generacion
U +2/3 | +1/2 | 0 | +1/3 | +4/3
d —-1/3 | =1/2| 0 | +1/3 | —2/3
Sequnda generacion
+2/3 | +1/2 | 0 | +1/3 | +4/3
—-1/3 | -=1/2| 0 | +1/3 | —2/3
Tercera generacion
t +2/3 | +1/2 | 0 | +1/3 | +4/3
b -1/3 | —-1/2| 0 | +1/3 | —2/3

Tabla 2.3: Quarks del ME y sus niimeros cuanticos: carga eléctrica (), isospin débil I3 e
hipercarga Y para las componentes quirales izquierda y derecha.

2.7.3. Bosén de Higgs

Ademas, dentro del ME hay una particula fundamental, el bosén de Higgs, dicha particula
es un bosén escalar cuyo espin tiene valor igual a cero. Este campo se introduce como un
doblete escalar complejo de SU(2), con hipercarga Y = 1.

H = (ﬁ;) (2.57)

donde la componente ¢ corresponde a la parte cargada eléctricamente del Higgs mientras que
#° corresponde a la parte neutra. El bosén de Higgs, es la particula responsable de generar la
masa de los bosones débiles que aparecen al imponer local la simetria SU(2), 2.35, y ademads,
generar masas para todos los fermiones del ME, esto es mediante la ruptura esponténea de la
simetria SU(2) x U(1)y. La dindmica del bosén se describe mediante su término cinético y
su potencial escalar,

V(H)=—p*H H + \N(H'H)? (2.58)

donde 1 y A son constantes reales. El potencial escalar del Higgs corresponde al término
més general renormalizable e invariante bajo la simetria SU(2), x U(1)y. Ademas, el signo
negativo de u? asegura que el potencial posea un minimo no trivial, lo que permite obtener
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un VEV no nulo para el campo. Al escoger un VEV distinto a cero que minimice el potencial,

el campo adquiere el valor,
1
(H) = — (O) (2.59)

con v & 246 GeV. Tal VEV, rompe espontaneamente la simetria SU(2); x U(1)y dando
paso a la simetria U(1) gy relacionada al electromagnetismo y la carga eléctrica. Ademas, los
bosones vectoriales que aparecian naturalmente al imponer una simetria SU(2) local en el
apartado 2.35, se transforman en los bosones débiles W* y Z que se relacionan de la siguiente
forma,

W — 2
W= ek (2.60)
8 V2
W, +iW?
Wr=—e e (2.61)
V2
Z,, = cos Oy Wi —sinfw B, (2.62)
A, =sinfy Wj’ + cos by B,,. (2.63

Donde 60y, corresponde al angulo de Weinberg y se definen las relaciones trigonométricas,

9 : g

= ———— sinfy = ——— 2.64
cos Oy \/W sin Oy \/W (2.64)
donde ¢’ corresponde a la constante de acoplamiento asociada a la hipercarga y g corresponde

a la constante de acoplamiento de interaccién débil.
Es importante resaltar que el valor del VEV del Higgs v ~ 246 GeV se determina
experimentalmente. Pues, al introducir tal valor de VEV al término cinético del Higgs, los

campos adquieren términos de masa:

1 1
mw = 590, Mz =35V 9%+ g*v (2.65)
Por lo tanto, midiendo experimentalmente my, y mz, y conociendo los valores de los acopla-

mientos g y ¢', se obtiene que el vev del Higgs debe ser v ~ 246 GeV.

2.7.4. Interacciones Fundamentales

Hasta donde sabemos, existen sélo cuatro interacciones fundamentales en la naturaleza:
Fuerte, electromagnética, débil y gravitacional. El ME, describe tres interacciones fundamen-
tales, dejando de lado la interaccion gravitacional, dicha interaccién, se describe mediante
la teoria de la relatividad general de Einstein. Ademas, cada interaccion tiene una teoria
cuantica relativista que la describe adecuadamente. También, dentro del ME, cada interaccion
fundamental tiene una particula mediadora de la interaccion asociada, las particulas mediado-
ras, cumplen con la particularidad de ser particulas con espin de valor 1, es decir son bosones
vectoriales. Dichas particulas, aparecen de manera natural en el ME cuando imponemos que
una simetria global sea local, de ahi nace la relacion entre las simetrias y las interacciones
fundamentales dentro del ME.
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2.7.5. Interacciéon Fuerte SU(3)¢

La interaccién fuerte estd descrita por la cromodindmica cuantica (QCD), las dnicas
particulas que interactian fuertemente, son las particulas que tienen carga de color, como
es el caso de los quarks y gluones. Cabe mencionar que los gluones son los campos G, que
aparecen al imponer la simetria global SU(3)c como local, como se muestra en la ecuacién
2.40. Ademas, son los campos vectoriales mediadores de la interaccion fuerte, por lo tanto, la
interaccion fuerte que hay entre dos quarks es mediada mediante el intercambio de gluones.
Lo que nos dice que tan fuerte sera una interaccién es la constante de acoplamiento de dicha
interaccion, para el caso de QCD, la constante de acoplamiento g. no es realmente constante,
depende de la separacion entre las particulas interactuantes, dicho fenémeno se le conoce como
libertad asintotica. Las interacciones entre quarks se debilitan mientras menor sea la distancia
entre ellos y aumentan mientras mayor sea la distancia entre ellos, es precisamente por este
hecho, por el cual no hay en la naturaleza quarks ”libres”. Ademds, los quarks suelen estar
confinados en hadrones. Los hadrones son particulas no fundamentales, como es el caso de los
bariones que son particulas formadas por tres quarks qgq y los mesones, que son particulas
formadas por un quark y antiquark ¢ [9].

2.7.6. Interaccion Electromagnética U(1)py

La interacciéon electromagnética se describe mediante la teoria de la electrodinamica
cudntica (QED). Es aquella interaccién que se produce entre dos o mds particulas las cuales
son portadoras de carga eléctrica, produciendo una fuerza de atraccién para cargas de distinto
signo y una fuerza de repulsiéon para cargas de mismo signo. La particula mediadora de la
interaccién corresponde al fotén, cuyo campo vectorial A, que lo describe, aparece post-
ruptura esponténea de la simetria SU(2), x U(1)y como una combinacién entre los campos
W, y el campo B, como se muestra en las ecuaciones 2.63. La constante de acoplamiento
de esta interaccién tiene el valor de la magnitud de la carga eléctrica de un electron, que se
define como e = V4ma, donde la constante de estructura fina o = %7

2.7.7. Interaccién débil SU(2),

La interaccién débil forma parte de la teoria electrodébil descrita por el grupo SU(2), x
U(1)y. A diferencia de la interaccién electromagnética y fuerte, la interaccién débil actia sélo
sobre fermiones con quiralidad izquierda, los cuales pre-ruptura de la simetria se organizaban
en los dobletes descritos en las ecuaciones 2.54 y 2.52. En esta interaccion, a diferencia de
la fuerte o electromagnética, no existe una unica carga débil, analoga al color o la carga
eléctrica, sin embargo, todos los quarks y leptones pueden interactuar débilmente. Ademsds, la
intensidad de la interaccién esta definida por la constante de acoplamiento del grupo SU(2).,
y el grupo U(1)y, la cual se relaciona con la carga eléctrica mediante, e = g sin 0y = ¢’ cos Oy .
Ademis, Los mediadores de la interaccién débil, son los bosones vectoriales W* y Z° descritos
en las ecuaciones 2.63.
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2.7.8. Lagrangiano del modelo estandar

Considerando todas las particulas del ME y sus interacciones, es posible condensar toda
esta informacion en un solo objeto, el lagrangiano del ME, el cual tiene todos los términos
posibles que respeten la simetria SU(3)c x SU(2);, x U(1)y. Ademds, el lagrangiano del
ME, debe respetar en su totalidad la simetria discreta C'PT, que es la combinacién de
las tres simetrias discretas mencionadas anteriormente. También, se debe considerar que el
lagrangiano del ME es un objeto invariante ante transformaciones de Lorentz, es decir, respeta
los principios de la relatividad especial de Einstein. El lagrangiano del ME se puede escribir
como la suma de otros lagrangianos,

Lye=Lc+ L+ Ly + Ly (2.66)

Es conveniente definir una sola derivada covariante para todo el ME, la cual condense lo
necesario para cumplir con el principio de invarianza local de gauge para el grupo del ME.

D=08,+igYB,+ig7 W,+g. -G, (2.67)

Se puede observar que esta derivada covariante, se define en funcion de las ecuaciones 2.30,
2.34 y 2.39.

Lagrangiano Lg
El lagrangiano de gauge es la parte cinética de todos los bosones de gauge que se dedujeron

en el apartado de teorias de gauge, es decir,
1 1

Lo=—-B"B,, — 1

aurv a 1 apurv a
1 wen WP“’_ZGH Guv (2.68)
Wy vy G, vienen dadas por las ecuaciones 2.31,

donde las definiciones de los tensores B
2.36 y 2.40 respectivamente.

ns

Lagrangiano Ly

Este lagrangiano se construye a partir de los términos cinéticos de cada uno de los fermiones
del modelo estandar, esto se puede expresar como,

Lk =) $iy'Dy (2.69)
Y

Donde, ¥ = L, e,, qp, u,, dr son los fermiones del ME. Ademés La suma incluye a todas las
generaciones, colores y representaciones de SU(2).

Lagrangiano Ly

Este lagrangiano se construye a partir de la parte cinética del Higgs que, al ser un bosén
con espin cero, se describe mediante el lagrangiano de KG descrito en la ecuacién 2.12. por lo
tanto, su parte cinética tiene la forma:

Lxn = (D,H) (D"H) (2.70)
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donde H es el doblete del Higgs definido en la ecuacién 4.3. Por lo tanto,
Ly = (D,H) (D'H) — *H'H + \(H'H)? (2.71)

donde se le anade el potencial del Higgs definido en la ecuacién 2.58.

Lagrangiano Ly

En el ME, los fermiones no puede poseer términos de masa, pues tales términos no respetan
la simetria de gauge del ME, por lo tanto el ME prohibe cualquier masa fermiénica antes de la
ruptura esponténea de la simetria. Sin embargo, el campo de Higgs es un doblete de SU(2)y,
lo que nos permite construir operadores que conectan fermiones izquierdos y derechos sin
romper la simetria de gauge del ME. Estos operadores son los términos de Yukawa Y,,,Y; e Y.,
los cuales se entienden como matrices complejas calculadas experimentalmente tras conocer
las masas de los fermiones, por lo tanto el lagrangiano del sector de yukawas se escribe como,

ﬁy = —(QLYuﬁuR+QLKlHdR+[_/L}/;H€R+h.c.> (272)
Donde, el higgs conjugado H se define como,

~ qz50*
H=inH" = ( ) (2.73)
—~
Ademas, la componente 1, se refiere a la segunda matriz de Pauli descrita en las ecuaciones
2.4. Y el término h.c. significa que hay que sumar el hermitico conjugado de cada término. Es
importante resaltar que la ecuacién 2.72 estd compactada, la versién expandida esta presente
en el anexo 5.6. A pesar del gran éxito experimental de este modelo, el ME es una teoria
incompleta, pues no explica la gravedad, la materia oscura, la energia oscura ni la masa
de los neutrinos, por ello es un componente fundamental pero no es definitivo, de ahi que
existan modelos méas alla del modelo estdandar como es el caso que se propone en el presente
documento [9].
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Capitulo 3

Neutrinos

En este capitulo se abordard la historia del neutrino como particula postulada debido al
estudio del decaimiento tipo beta.

Ademés, se indagara en el mecanismo de oscilacion de neutrinos entre sus tres sabores,
electrénico, muonico y taudnico, con el objetivo principal de demostrar que al haber oscilacion
de sabores, los neutrinos deben tener masa.

Posteriormente, se evaluaran los términos de masa tipo Dirac y términos de masa tipo
Majorana, en adicién a los mecanismos como extensiones del ME, por los cuales los neutrinos
adquieren masa, tales como los mecanismos tipo Seesaw.

3.1. Historia

Historicamente, se propuso la existencia del neutrino debido al estudio de un decaimiento
beta en los anos 1930. En un decaimiento tipo beta, un ntcleo radioactivo A se transforma
en un nucleo un poco mas ligero B, con la emision de un electrén:

A—=B+e (3.1)

Las leyes de conservacion de carga requieren que B deba tener una unidad mas de carga
positiva que A, tal proceso podria ser el decaimiento de un neutrén A en un protén B. Ahora,
en un decaimiento de dos cuerpos A — B + (', las energias salientes estan cineméaticamente
determinadas, en el marco de referencia del centro de cuadri-momento, esto quiere decir,

2 .2 2
E=(la=Ms T ey 2 (3.2)

2mA

Lo importante a resaltar de esto, es que E esta fijado una vez se conocen las tres masas de
los cuerpos involucrados. Sin embargo, experimentalmente se determiné que los electrones
emitidos variaban considerablemente en energia, por lo tanto, la ecuacién 3.2 sélo determina
la méxima energia de un electrén en un particular decaimiento tipo beta. Es por este hecho
que, el cientifico Wolfgang Pauli sugirié que otra particula es emitida durante un decaimiento
beta, una particula ”silenciosa”, la cual se lleva la energia "perdida”. Tal particula, debiese
ser eléctricamente neutral, con el fin de conservar la carga eléctrica en un decaimiento beta.
Ademsds, debido a que experimentalmente la energia maxima del electrén fijada por la ecuacion
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3.2, coincidia con el valor maximo del espectro de energias observado experimentalmente, se
deduce que la particula debe ser extremadamente ligera. Si dicha particula tuviese una masa
considerable, los valores experimentales del espectro de energias tendrian un corrimiento hacia
abajo, lo cual no coincide con las observaciones.

Debido a la neutralidad de la particula y su ligereza, el cientifico Enrico Fermi la denominé
neutrino (que en italiano significa literalmente ”pequeno neutro”).

En el contexto de un decaimiento beta, actualmente nos referimos a un anti-neutrino, el
cual tiene las mismas propiedades que el neutrino pero con sus nimeros cuanticos invertidos
de signo. Por lo tanto, en la notacién moderna, un decaimiento beta se escribe como,

n—p +e +0 (3.3)

donde p* corresponde a un protén, n corresponde a un neutrén y 7, corresponde a un
anti-neutrino del tipo eléctrico. Distintos experimentos tales como el del decaimiento beta,
mostraban la necesidad de la existencia del neutrino como particula fundamental, sin em-
bargo, fue complicado demostrar su existencia experimentalmente, pues el neutrino tiene
la particularidad de que interactiia muy débilmente con la materia, de hecho, un neutrino
puede facilmente penetrar 1000 anos luz de plomo pasando totalmente desapercibido en el
proceso. Para corroborar la existencia del neutrino experimentalmente, se realizaron una serie
de experimentos en el reactor nuclear Savannah River en Carolina del Sur, alrededor de los
anos 1950. En tal reactor nuclear, los cientificos Cowan y Reines, llenaron un gran tanque de
agua y esperaban observar el decaimiento beta inverso, es decir,

ve+pt = n+e (3.4)

En tal detector, el flujo de anti-neutrinos se calculé de ser aproximadamente 5 x 103 particulas
por centimetro cuadrado por segundo, pero incluso con ese flujo, solo se esperaba tener dos o
tres eventos cada hora. Por otro lado, desarrollaron un método para identificar el positron
saliente de tal reaccion. Finalmente, sus resultados fueron positivos y dieron informacién
inequivoca de la existencia del neutrino [13].

3.2. Oscilacion de neutrinos

A medida de que fue descubierto el neutrino, se ha hecho distintas observaciones y
experimentaciones con el fin de entender en mayor profundidad a esta particula, una de esas
experimentaciones se realizé en 1969 por el cientifico Raymond Davis [11], el cual buscé
detectar los neutrinos electronicos que debiesen llegar a la tierra producto a las reacciones
nucleares en el interior del sol, sin embargo, los resultados fueron desconcertantes, pues el
nimero de neutrinos electronicos detectados correspondia a aproximadamente la mitad del
valor esperado. Este problema fue resuelto por los experimentos realizados en el SNO [2]
y el Super Kamiokande [3]; donde se descubrié que los neutrinos pueden cambiar de sabor
leptonico, dicho fenémeno se conoce como oscilacién de neutrinos. La oscilaciéon de neutrinos
es un fenémeno en el cual un cierto sabor de neutrino v,, periédicamente cambia a otro sabor
de neutrino v y viceversa. Este fenémeno es causado por una amplitud de transicién entre
Vo ¥ V. Debido a esta amplitud de transicién, los autoestados de sabor no tienen masas fijas
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y se convierten en superposiciones de autoestados de masa. La funcion de onda general para
tres sabores de neutrinos se expresa como,

[90(8)) = Ce(t) [ve) + Cu(t) [vu) + C(1) vr) (3.5)

Por lo tanto, hay nueve amplitudes de transicién entre los tres estados de sabor del neutrino.
Se define la ecuacion de estado relativista como,

dact) 1 L
7——z730(t)——zj C(t), (3.6)
donde,
Ce(t) | [ e Tie T
Cty=(Cut)| T == Tue b 75 (3.7)
CT<t) i Tre Tru HMr

y J' es la matriz de transicién efectiva. La ecuacién 3.6 describe la evolucién temporal del
neutrino en la base de sabores, donde el vector columna 3.7, es un vector de amplitudes de
probabilidad de que el neutrino sea electrénico, muoénico o taudnico en el tiempo t. Para
resolver la ecuacién 3.6, se debe diagonalizar la matriz J’ utilizando una matriz unitaria U,

1 mq 0 0
UJU,=M==-10 mg 0 |. (3.8)
TNO 0 ms

Donde se escribe los elementos de U, de la forma,

Uel Ue2 Ue3
U, =Un Up Us (3.9)
UTl UT? UT3

Por lo tanto, la matriz de elementos U,; y las masas m,; son combinaciones de los elementos de
las amplitudes de transicién J,g. Si utilizamos la matriz de masa M’, la ecuacion de estado

3.6 puede ser escrita como,

o)
— = —iM'D(t) (3.10)

donde,

D
D(t) = | Dy(t) | = UlC(t) (3.11)
D

D(t) = W (¢)D(0) (3.12)
donde,
e~ i(m1/7)t 0 0
W(t) = 0 e~ ima/7t 0 : (3.13)
0 0 e—i(ma/7)t
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Por consecuencia, C(t) puede ser obtenido a partir de D(t) como,
C(t) = U,D(t) = [U,W (1) |D(0) = [U,W (1)U} ]C(0) (3.14)

Ahora, la funcién de onda de la ecuacion 3.5 puede ser escrita en funcién de la ecuaciéon 3.14
como la suma de tres autoestados de masa,

1, (1)) = e/ DL(0) [1y) 4+ e 712/ Dy(0) (1) 4 €13/ D Dy(0) [15) (3.15)

donde los autoestados de masa |v;) son mezclas de los tres autoestados de sabor |v,) dados
por,

|V1> Uel U,ul U‘rl ‘Ve> |Ve>
o) | = (U2 Uz Ura | [Iv) | = U | Iv) (3.16)
|V3> UeS Uu3 U’T3 |V7'> |VT>
Donde la matriz de mezcla U, se le conoce como la matriz de Maki-Nakagawa-Sakata-
Pontecorvo (MNSP) [15]. Lo importante de este fendmeno es que, la oscilacién de neutrinos

solo es posible si los autoestados de sabor son combinaciones de autoestados de masa con
masas distintas. Si m; = 0 o m; = my = mg las fases temporales son iguales y el fenémeno
desaparece. Por lo tanto, el hecho experimental de que existan cambios de sabor entre los
neutrinos, implica que los neutrinos han de tener una masa distinta a cero. Sin embargo, en
el ME los neutrinos se asumen como particulas sin masa, por ello, es necesario hacer una
extensién al ME para explicar la masa de los neutrinos.

3.3. La masa de los neutrinos

En el modelo estandar, los neutrinos son fermiones que forman parte del doblete lepténico,
LT, = (l/g E) , Los neutrinos que son parte de este doblete leptonico se denominan neutrinos
activos, y corresponden a los neutrinos asociados a cada leptén cargado, ¢ = e, u, 7. Cémo
se mencioné en el apartado del ME, el grupo SU(2), esta relacionado con la interaccion
débil, es decir, los neutrinos sélo interactian débilmente mediante la interaccién débil cargada
(asociada a los bosones W), y la interaccién débil neutra (asociada al bosén Z°).

3.3.1. Términos de masa para neutrinos.

Los términos de masa de neutrinos pueden ser construidos de varias formas, siempre que
se respete la simetria de gauge del modelo estandar. Es posible anadir distintos términos
al lagrangiano del ME, por ejemplo, una extension posible del modelo estandar es anadir
neutrinos estériles derechos, que son particulas que no interactiian bajo el grupo de gauge del
modelo estandar. El anadir m, ntimero de neutrinos estériles vy, nos permite construir dos
tipos de términos de masa en el lagrangiano del modelo estandar:

1
_‘CMV = MDij DsiVLj + §MNij Dsz'ng + h.c. (317)

donde v corresponde al neutrino activo zurdo del ME, v¢ es el neutrino con su campo
conjugado, Mp es una matriz compleja de dimension m x 3 y My es una matriz simétrica de
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m X m. el primer término de masa es generado luego de la ruptura espontanea de la simetria
electrodébil,

Y i &' Li; = Mpy; = Y] %, (3.18)
Este corresponde al término de masa de Dirac y conserva totalmente el niimero leptoénico.
El segundo término del lagrangiano corresponde al término de masa de Majorana, notese
que difiere del termino de Dirac por distintos aspectos, por ejemplo, es un singlete ante
el grupo de gauge, es decir, puede aparecer como un término desnudo en el lagrangiano,
también, involucra dos neutrinos diestros (estériles), lo que implica que rompe el nimero
lepténico en dos unidades, tal término no debiese estar permitido si los neutrinos llevan cargas
conservativas. El lagrangiano 3.17, se puede reescribir como:

- 1 :C = 0 Mg V_L _ S —
—Ly, = 5 < ¢ 1/5> <MD MN) (ﬁc +h.c. =M,V + h.c., (3.19)

s

-

donde 7 = (vr,, v¢)T es un vector de dimensién (3+m). La matriz M, es una matriz compleja y
simétrica que puede ser diagonalizada mediante una matriz unitaria V¥ de dimensién (3 +m),
lo que implica que,

(VYT M, VY = diag(my, ma, ..., M34m). (3.20)

Entonces, es posible expresar los autoestados de sabor iniciales, en términos de autoestados
de masa,
Umass = (V)10 (3.21)

Por lo tantos los términos de masa de 3.17, en funcién de los autoestados de masa toman la
forma,

3+m
1

§ : —c — c
5 mg (Vma.ss,kVIH?JLSSJ‘C + Vmassakymass,k)
k=1
1 3+m
= 5 E mklekl/Mk, (322)
k=1

_»CMV —

donde
VMk = Vmass,k + Vrcnass,k = (VUTV)k + (VVTV)Z.

Por lo tanto, esos estados cumplen con la condicion de Majorana

Up = Uy
y se les llama neutrinos de Majorana. La condicién de majorana implica que solo un campo,
describe tanto al neutrino como al anti-neutrino, a diferencia de los fermiones cargados cuyas
particulas y antiparticulas se describen mediante distintos campos. Esto significa que los
neutrinos de majorana pueden ser descritos por solamente un espinor de dos componen-
tes, a diferencia de las particulas de Dirac, que se describen mediante espinores de cuatro
componentes [5].
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3.3.2. Mecanismo de Seesaw tipo I

Si los autovalores de My son mucho mayores que los valores de masa del modelo estandar,
la diagonalizacién se considera perturbativa, M, lleva a tener tres neutrinos ligeros v; y m
neutrinos pesados, N:

—Ly, = % oMy, + % NM"N, (3.23)
con,
M' ~ - VIMEMG MRV, M" ~ VI MV, (3.24)
v,
o ( - %M})M;,‘lM](,lMD) v, MMV, 525)
- MMV, ( . %M;MDM})M;‘V*) Vil '

donde V; y Vj, son matrices unitarias 3 x 3 y m x m respectivamente. Se observa que M’ es
inversamente proporcional a My mientras que M” es directamente proporcional a My, de
ahi el nombre See-saw (balancin en inglés), pues si M! debe ser pequefio, implica que M"
debe ser grande [5].

Cabe mencionar que el mecanismo Seesaw tipo I, permite introducir términos de masa sin
romper ninguna simetria de gauge del ME, ya que los neutrinos derechos son singletes bajo
el grupo de gauge del ME. No obstante, el modelo seesaw I, no tiene un mecanismo con el
cual, de manera natural aparezcan los términos de masa para los neutrinos diestros. Ademaés,
para cumplir con la ligereza de los neutrinos activos del ME, es necesario introducir neutrinos
derechos con masas extremadamente pesadas, que se acercan a la escala de gran unificacion,
siendo totalmente inaccesible su verificacién experimental.

3.3.3. Mecanismo See-saw inverso minimo

El mecanismo de See-saw inverso minimo (SI), requiere introducir dos neutrinos estériles
diestros, obteniendo asi un lagrangiano relacionado a los términos de masa,

1
L= —3 nfOMny +hec., (3.26)

donde, ntT = (vy, Nf, N,), C corresponde al operador de conjugacién de carga, mientras que
N; y Ny corresponden a los neutrinos estériles diestros. para el caso de solo un neutrino activo,
la matriz de masa para los autoSestados de interaccion débil, M corresponde a,

0 mp 0
M = mp 0 M s (327)
0O M u

Por lo tanto, si descomponemos 3.26, el lagrangiano queda como,

L= —mp DLNRI — MNRQNRl — §N§2NR2 + h.c. (328)
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La matriz 3.27 puede ser diagonalizada perturbativamente, de manera similar al caso del
mecanismo See-saw tipo uno, cuando pu < mp < M, lo que nos proporciona un neutrino
masivo. La matriz unitaria que nos permite acceder a los autoestados de masa viene dada por,

mpp mp
M? +m? M
1Mp 1 7
Ur=| NG 7 (3.29)
mp 1 1
V2M V2 V2

donde la diagonalizacién perturbativa [10],

(%57)%n 0 0
U MU; = 0 M+5p+4 3 (3.30)
0 - M+=5P -5
Por lo tanto,
2

m, = (%) i, (3.31)

m2

m2
my, = M + WD +5 (3.33)
(3.34)

seran los valores de las masas del neutrino activo m,, el neutrino estéril my, y el neutrino
estéril my, respectivamente [6].
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Capitulo 4

El modelo seesaw inverso con ruptura
espontanea de la simetria U(1)
leptonica

El modelo estandar cuenta con su simetria de gauge requerida para que existan las
interacciones fundamentales (exceptuando la gravedad). En ausencia de singletes bajo el grupo
de gauge completo del ME, se observa que existe una simetria adicional, la cual aparece de
manera accidental, pero como consecuencia de la simetria de gauge del ME.

Gl — U7(1)p x U(1), (4.1)

donde U(1)p es la simetria del nimero bariénico, y U(1), corresponde la simetria del nimero
lepténico total, L. + L, 4+ L,. Como bien se menciono en el apartado del ME, la ruptura
espontanea de la simetria da masa a particulas, entonces, al combinar el mecanismo de SI que
da una forma de matriz de masa para los neutrinos, una causa de esas masas puede ser la
ruptura espontanea de la simetria U (1) [0].

4.1. Lagrangiano del modelo

Considerando la simetria U(1);, y el mecanismo de SI, es posible construir el siguiente
lagrangiano,
£ =~y THN; - ys S'N,Nf — X XTNGN, + he. (4.2)

El doblete del Higgs se define como, H” = (x™, (vi, + o5 + ixn)/v/2), donde o}, corresponde
a su componente escalar, x;, corresponde a su componente pseudo-escalar, v, = 246 GeV
corresponde a su VEV y xT corresponde a la componente longitudinal de W*. También
se introducen tres nuevos acoplamientos de Yukawa, y4,ys,y, los cuales no deben exceder el
lfmite perturbativo, es decir, |y;| < vV4w. Ademds, se introducen dos nuevos campos escalares
complejos, los cuales estan cargados bajo carga lepténica pero son neutrales ante todo el
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grupo de gauge del ME [(].

X+
H= | vy +0on+ixn (4.3)
V2
(Us +os+ ZXS)
S — 4.4
7 (4.4)
¥ _ (Vz + 0 +iXa) (4.5)

V2

Notese, que estos campos tienen su parte escalar asociada a o; y su parte pseudo-escalar
asociada a ;. Luego de la ruptura espontanea de la simetria U(1);, estos campos adquieren
sus respectivos VEVS v, v v,. Por lo tanto, los términos de masa del modelo tendran la forma:

YLVUn
= , 4.6
mp \/§ ( )
YsUs
M = , 4.7
NG (47)
p= XX (4.8)

V2

De estas relaciones, debido al limite perturbativo de los yukawas |y;| < V4w, se pueden
establecer cotas inferiores para los VEVS,

M
v > o2 4.9
S = \/ﬂ ( )
)
Vy > ——. 4.10

Por otro lado, el lagrangiano del modelo presente en la ecuacion 4.2, debe ser invariante
bajo la simetria global U(1),. Esta condicién fija parcialmente las cargas leptonicas de los
nuevos campos debido a los acoplamientos existentes en el lagrangiano [0].

L [N [N, § [X
SUR), | 2 [ 1 [ 1] 1 |1
ULy [1/2[ 0 0] 0 |0
Uld), | 1 | -1

1—2 | 2z

8

Tabla 4.1: Asignacion de cargas para el modelo. La primera fila enumera los campos: corres-
pondientes al doblete leptonico L, los neutrinos derechos Ny, Ny y los escalares S, X. La
primera columna indica el grupo de simetria bajo el cual se define cada carga.

En particular, el acoplamiento LHN¢, exige que la carga lepténica del neutrino N; sea
q[N1] = —1. Mientras que el acoplamiento STN,N¢, impone que ¢[S] = 1 — ¢,[No]. Ademés,
el acoplamiento XTN5N, impone que: ¢,[X] = 2¢,[Na]. A partir de estos acoplamientos, se
observa que existe un parametro libre g,[Ns] = x, el cual nos permite construir una asignacién
de carga para el modelo, como se muestra en la tabla 4.1.
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4.2. Sector escalar

La adicion de los nuevos campos escalares complejos S y X, implica la adicién de sus
respectivos potenciales, de tal forma que,

A A
Vax = —p§lSI° + ISI* — il X PP + ZEIX 4 A SPIX P + Vi, (4.11)

donde los términos ;2 son términos bilineales positivos y \; son términos de interaccién entre
los campos. Ademas, si queremos anadir un término de acoplamiento no trivial entre los
campos S y X, es necesario dar un valor al parametro libre x, se opt6 por z = 3/5. De esta
forma, es posible anadir el siguiente término al potencial,

Vi =XNXS® +he. (4.12)

Al realizar tal asignacion de carga, nos permite tener valores fijos para las cargas lepténicas
de todos los campos introducidos en el modelo, como se ilustra en la tabla 4.2.

L [N [N S X
SU2),| 2 [ 1| 1 [ 11
Ul)y [1/2[ 0] 0 | 0 | 0
U1, | 1 | —1]3/52/5]6/5

Tabla 4.2: Asignacién de cargas para el modelo con z = 3/5. La primera fila enumera los
campos: correspondientes al doblete leptonico L, los neutrinos derechos Ny, Ny y los escalares
S, X. La primera columna indica el grupo de simetria bajo el cual se define cada carga.

También, se debe anadir el potencial del Higgs y sus interacciones con los otros campos,

A
Virsx = —puy HTH + TH(HTH)Q + Aus|SPHTH + Agx| XPHTH, (4.13)
Para este potencial, se asumen los valores de m;, = 125 GeV y \,=0.516 presentes en el
modelo estandar [17]. Por lo tanto, el potencial total tendra la forma:
Viotat = Vusx + Vsx (4.14)

Considerando el potencial de la parte del Higgs y la parte de los escalares S y X [0].

A partir de este apartado, se utiliza el software Mathematica para la resolucion de
expresiones matemadticas. Es posible hallar expresiones para los términos p? utilizando las
ecuaciones de Tadpole es decir,

a‘/:cotad

i
s}

-0 (4.15)

so=0

donde, st = (op, 05,04, Xs» Xz)- Nétese, que en las ecuaciones de Tadpole no se estd conside-
rando la parte cargada del Higgs x™ Y xz, pues su resolucién es trivial y no aporta informacién
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relevante a nuestro procedimiento. A partir de 4.15, se halla que,

1
uir = 705 (5 +200rs + Aax o?) (4.16)
1
2 = ng (22 M is + As + 2w(=3\5 + Asw)) (4.17)
2
Wy = Z_Z (=207 +2(Xs + € mx)w + Axw?) . (4.18)

donde se definen los parametros,

W= U, /v (4.19)
€n = Up/vs (4.20)

Por lo tanto, con el reemplazo de estos valores de p; en nuestro potencial total 4.14, es posible
construir una matriz de masas utilizando,

0?Veseal
—__oea ={M?},.. 4.21
88? 859 00— { } J ( )
87; _Sj_
La matriz Hessiana de 5 x 5 se puede expresar como,
M2 0
M? = ( es 2) (4.22)
s 0 M,
Donde M2, corresponde a la matriz de masa de los escalares o;
Lo 2 2
§US€H)‘H USEH/\HS vSeH)\HXw
) 5 1, 9 3\
Mes = USEH/\HS 51]5(/\5 — 3)\]&)) Vg —T + Asw (423)
3)\] U2 ()\J + >\Xw3)
U%eH)\HX(JJ "Ugw (—T + )\50.]) S 2w
Mientras que, MI?S corresponde a la matriz de masa de los pseudo-escalares ;.
9 3
QU%)\JW —§U§)\J
2 _
My = 3, 02N, (4.24)
—=v
2 57 Ty

4.3. Diagonalizacion de la matriz de masa

Es posible diagonalizar dichas matrices de masa, con el fin de hallar autoestados de masa
reales. Es posible diagonalizar por separado el sector escalar y el sector pseudo-escalar.
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4.3.1. Diagonalizacion Mgs

Para la matriz de masa de los pseudo-escalares, debemos hallar la matriz I?,, unitaria, la
cual diagonalice M}, es decir,
M., = Ry MR (4.25)
Dicha matriz se puede calcular y tiene la forma,

1 1 3w
Ry = —— 4.26
" VI 0w (—3w 1 ) (4:26)

De tal forma,

0 0
My = 0 viAs (1 + 9w?) (4.27)
2w

Notese, que la diagonalizaciéon dio como resultado un pseudo-escalar sin masa, esto no es
extrano, se debe a que la ruptura espontdanea de una simetria global, conlleva la aparicién un
bosén de Nambi-Goldstone sin masa. Mientras que el pseudo-escalar, al cual nos referiremos
como majoron, tiene una masa definida,

2\ (1 + 9w?)

2 srv T 4.28
my 2w ( )

4.3.2. Diagonalizacién M2

Para la diagonalizacién de la matriz de los escalares, se considera que ¢, < 1, por lo
tanto, es una diagonalizacion perturbativa por bloques, Donde habran dos rotaciones que

. . 2
diagonalicen MZ,,

M2, = RyRiM” R R} (4.29)
Donde la forma de R; puede venir dada por,

L (V2 0 0
Rl:% 0 Vi+v V1-% (4.30)
0 —vV1—v¢ 1+
Donde el parametro ¢ es una parametrizacion 1til del dngulo de rotacion ¢ que diagonaliza el
bloque pesado 2 x 2. Se define como 1) = cos 2¢, lo que implica que,

cosqS:\/#, sinqﬁ:\/%, (4.31)

Ademads, con el fin de facilitar el proceso de la diagonalizacién, se realizaron los siguientes
cambios de variables en el software de Mathematica,

A

3\
As1 = A5 — — 4.
51 5 20 ( 33)
Aot = As — 3Ajw (4.34)
As1
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Finalmente, se puede hallar el valor algebraico de ¢ que diagonaliza el primer bloque de

nuestra matriz M2, esto imponiendo la condicién de que el sub-bloque rotado se anule, es

decir, (M2)93 = 0, por lo tanto el valor de 1 viene dado por:

A
b= d (4.36)
V16N, + A%?

Para la segunda rotacién R, que nos permita diagonalizar M?

es)

se optod por la siguiente

matriz,
1 6hws Ehdjm
Ry = | —ept)s 1 0 (4.37)
—Ehwx 0 1

Las expresiones algebraicas para s y 1, (presentes en el anexo 5.8), se determinan de manera
que los elementos afuera de la diagonal, tengan dependencia de ¢, (o potencias mayores) y
por lo tanto perturbativamente, la matriz sea diagonal tras las rotaciones.

Una vez diagonalizada la matriz de masas para los escalares, se obtuvieron expresiones
para las masas al cuadrado,

U2)\h
m? = h2 A (4.38)
m2 = 11)2 (2/\ 1 — W (—)\51 w + A 1w+ \/16)\2 + ()\51 - A 1)2W2)> (439)
S92 4 S s x 51 x
2 _ 1 2 2 2,42
m;, = - | 22X +w | Adstw — Aprw + 4/ 1625, + (As1 — Ap1)?w 4.40
S3 4 s 5
m} =0 (4.41)
2y . 1 2
m? = US)‘](2: 9w”) (4.42)

Donde, se cumple que m,, < mg, < mg,. También, cabe mencionar que my, corresponde a la
masa del boson de Higgs y A cuyo valor se encuentra en el anexo 5.9, es una combinacion de
los distintos parametros de interaccion los cuales en conjunto deben dar un valor similar a 1,
esto para respetar el valor fijo de la masa del bosén de Higgs.

4.4. Espacio de parametros

Con los resultados obtenidos, es posible construir un espacio de parametros mediante
el software V.Scode en lenguaje de Python dando rangos de valores plausibles a algunos
parametros, esto con el fin de encontrar otros valores de parametros con sentido fisico, esto
teniendo en cuenta distintas condiciones fisicas que se mencionaran caso a caso. En este
modelo, se asumira el rango

0°<2<10? con 0<z<1 (4.43)

para distintos pardmetros perturbativos como €. Si bien, es posible ampliar el rango 4.43, esto
puede llegar a romper la escala de Planck para masas, lo que implicaria tener en consideracion
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Espacio: [mp, y, M1, con My, =10° [GeV]
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Figura 4.1: Espacio de masas SI, con My, > 10° GeV

efectos gravitacionales que no se pueden describir mediante nuestro modelo. Ademas, se
utilizara un total de N = 1.000.000 de muestras aleatorias, las cuales se definen mediante
el comando "np.random.uniform()”, tales muestras, ademés deben pasar por el comando
"np.logl0()” para que exista una distribuciéon mas uniforme entre los valores. Este nimero de
muestras aleatorias se acotaran a medida de que se introduzcan distintas condiciones para
nuestros parametros. Dentro del espacio de parametros se tendra en cuenta las relaciones,

lyi| < vdr (4.44)
0<|N| <d4m (4.45)

J J

las cuales corresponden a relaciones de perturbatividad para los Yukawas y; y acoplamientos
Ai, ademas de la condicion de estabilidad del potencial relacionada a los términos \;;. En
adicion a las condiciones anteriores, para tener un potencial estable se imponen las condiciones
para las ecuaciones de Tadpole 4.15 tal que, sean siempre positivos los valores de p?. Ademds,
con el fin de tener un modelo que pueda coexistir correctamente con el modelo estandar,
se tomara que la masa del Higgs tendra un valor de m;, ~ 125 4+ 0.1 GeV y un valor del
acoplamiento A\, = 0.516 [17].

4.4.1. Espacio de masas de Seesaw Inverso

El modelo de Seesaw inverso impone la condicién p < mp < M, por lo tanto, se puede

definir el parametro perturbativo ¢, = mLD, ademds de otro pardmetro perturbativo, e,y = 2.

En este modelo, se va a definir un rango my basdndonos que dentro del ME, los Yukawas y;
tienen un valor minimo asociado al electrén de 7. ~ 2.9 x 1075 y un valor méximo asociado
al quark top y; ~ 1. Por lo tanto, a partir de definir un rango de

107° <yp <1, (4.47)
utilizando la ecuacion 4.6 y el valor del VEV del Higgs fijo vy =~ 246 GeV, se obtiene que,
107* GeV < mp < 10% GeV (4.48)
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Espacio: [mp, u, M], con My, = 10° [GeV]
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Figura 4.2: Espacio de masas SI, con My, > 106 GeV

lo que nos da un rango para mp. También, es posible definir la variable 1 como, u = €,,mp,
esto con el fin de obtener un rango de valores para p en funcién de nuestra relacién de
perturbatividad y en funciéon de nuestro rango para mp. Con estos rangos para mp y p, €s
posible construir el rango de valores para M, utilizando la ecuacion 3.32 y considerando una
masa de neutrino m, = 107° GeV [17]. Ademads, se debe tener en cuenta que los neutrinos
diestros N7 y N, deben ser lo suficientemente pesados para no poder ser detectados con
las limitaciones experimentales existentes, por ello, utilizando la ecuacién 3.33, se agrega la

condicion,
2

m
M+ L
JrM

Al considerar las condiciones de perturbatividad para los términos € y la condicién para la
masa del neutrino Ni, se obtienen los siguientes valores méximos y minimos en los cuales
estaran los valores de nuestras variables,

_ K

> 10° GeV

(4.49)

Parametro Minimo Méximo
mg [GeV] 4.67 1.00 x 107
M [GeV] 1.00 x 10° | 9.86 x 10°
p[GeV] | 1.01 x 107* | 9.85 x 107!

Es interesante notar que el rango de mp, a pesar de ser definido en principio como en la
ecuacion 4.48, se termina acotando debido a las restricciones impuestas.

Anilisis del espacio [mp,u,M]

Una vez definido los rangos de nuestras variables, es posible construir un espacio de masas
del modelo SI como se muestra en la figura 4.1.

En dicho gréfico se presenta el espacio de puntos en el plano (mp,u) coloreado por la
variable log,, M. Dichos puntos, satisfacen simultdneamente en su totalidad las condiciones
impuestas tales como, 4.49, m, = 107!% GeV y las relaciones de perturbatividad €,, y €.
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Espacio: [M, vs] con ys ="§—5"”
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Figura 4.3: Espacio [M, v, ys]

El resultado muestra una forma triangular bien definida, lo que refleja las correlaciones
entre las variables u, mg y M, la forma triangular es consecuencia directa de la relacién
de SI 3.32 considerando las relaciones perturbativas entre las masas. A partir de la figura,
se observa que la mayoria de puntos para M se encuentran en el rango de 10° < M < 107
GeV, donde los valores minimos de M se obtienen en las regiones en las cuales my y i son
menores, mientras que los valores crecientes de 1 y mp, tienen asociado un valor alto de M,
esto siguiendo un crecimiento diagonal de color, debido a la dependencia M o< mg./p.

Ademas, es posible proponer otro valor minimo de My, tal que:

mp p 6
M + w3 > 10° GeV (4.50)
Con el fin de observar la relevancia de la condicién para el neutrino pesado en nuestro espacio
de pardmetros. A partir de la condicién 4.50, es posible construir un nuevo espacio de masas del
modelo SI 4.2. Dicho espacio, al igual que la figura anterior, muestra los puntos que satisfacen
simultdneamente las condiciones de m, = 10719 GeV y las relaciones de perturbatividad para
las variables €, v €,,. 4.3.

Al comparar la figura 4.2 con la 4.1, se puede observar que se mantiene el patrén triangular
y el patron de color, sin embargo, existe una disminucién considerable del area efectiva de la
figura 4.1 con respecto a la figura 4.2. Por lo tanto, es a partir de exigir una restriccion de la
masa del neutrino pesado la que limita significativamente la cantidad de puntos vélidos en
nuestro modelo.

Cabe mencionar que con el fin de tener una mayor de cantidad de puntos vélidos, todas
las figuras exceptuando 4.2, utilizan la restriccion de masa del neutrino pesado 4.49.

4.4.2. Espacio de Yukawas y VEVS

Con el fin de construir un espacio de parametros relacionado al Yukawa y,, es conveniente
definir la variable vy = % GeV, lo que nos permite generar valores aleatorios para v, dentro
del rango de perturbatividad de ¢, que se define en la ecuacién 4.43 y del limite inferior para
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Espacio: [y, vi] con yy =%
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Figura 4.4: Espacio [, vy, Yz

vs que nos otorga la ecuacion 4.10. Por lo tanto, podemos determinar valores de y utilizando
la ecuacién 4.7 y considerando el limite perturbativo de los Yukawas de la inecuacién 4.44.
Con ello, se obtienen los rangos mostrados en la tabla 4.3. Tales rangos son totalmente vélidos

Tabla 4.3: Rangos de ys v v,

Pardmetro Minimo Méximo
Ys 5.82 x 1074 3.54
vs [GeV] 4.06 x 10* | 2.46 x 108

en el marco del ME y del SI. Ademés, nos permiten construir un espacio de parametros
relacionando vy, ys y M, mediante la ecuacion 4.7, como se muestra en la figura 4.3.

Anélisis del espacio [M,vg,ys]

La figura 4.3 muestra el espacio accesible en el plano (M, v,) coloreado por la variable
log,, ys. Los puntos representados corresponden a configuraciones fisicas que satisfacen en
conjunto las distintas condiciones impuestas.

El gréfico revela un espacio triangular el cual, se explica por la dependencia que existe
entre los parametros evaluados mientras y, se mantiene en el rango perturbativo para los
Yukawas.

Dado que ys; o< M /vy, los valores mas altos de M requieren valores crecientes de v para
evitar que el acoplamiento exceda el limite superior v/47. De manera similar, valores pequetios
de v, son solamente compatibles con valores de M pequenos. Es interesante notar que el
eje vertical v, cubre aproximadamente valores de 10° hasta 10° GeV, lo que muestra que el
régimen permitido favorece valores altos de vg, mientras que valores pequenos de vy quedan
totalmente excluidos pues inducirian valores de y, no perturbativos.

Analizando el patrén de color, se puede observar que cuando el factor M/vs ~ 1, los
valores de y; son mayores teniendo el color amarillo, sin embargo, a medida de que vs sea
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cada vez mayor a M, los valores de y, toman colores mas oscuros, lo cual es consecuente con
la relacién ys o< M/v,. También es importante resaltar el truncamiento existe de la figura,
este truncamiento viene dado el valor maximo que puede tener M de alrededor de 10" GeV
en el eje horizontal por las condiciones de SI, si no existiera tal restriccion para M, la figura
podria alcanzar un patrén triangular mas notorio.

Esta distribucion ilustra la naturaleza inversa entre las relaciones de v, y el Yukawa, los
incrementos de v a escala fija de M reducen la magnitud de y,, mientras que regiones donde
M crece mas rapido que v, son rechazadas por la condicién de perturbatividad, esto explica
que no hay puntos por debajo de la zona coloreada amarilla.

Por otro lado, a diferencia del caso de vy, el parametro v, no tiene porque ser perturbativo
en nuestro modelo, por lo tanto, una forma de encontrar un rango plausible en el que habite
este parametro, es mediante fijar el rango de y,, similar a como se realiz6 con yg,

107°%<y, <1 (4.51)

Una vez definido este rango para y,, mediante la ecuacién 4.8 podemos determinar el rango
en el cual estara v,, como se muestra en la tabla 4.4.

Tabla 4.4: Rangos de y, v v,

Pardmetro Minimo Maximo
Ya 1.00 x 107° | 9.99 x 10!
v, [GeV] | 1.71 x 1074 | 1.15 x 10°

Anélisis del espacio [i,v,,y.]

En la figura 4.4 se muestra el espacio permitido de nuestros puntos en el plano (u,v,)
coloreado por log,, y,.. A diferencia de la figura 4.3, aca se definié un rango plausible para y,
con el fin de encontrar valores para v,, y esto se ve reflejado por los valores de v, que tienen
una gran dispersion.

El area en el cual habitan los puntos validos, tiene la particularidad de estar acotado
verticalmente por dos lineas paralelas, las cuales vienen dadas por el limites inferior y superior
en los cuales puede habitar el pardmetro v, en funciéon de la ecuacion 4.8 y el rango escogido

para Yy,

(4.52)

Analizando el patrén de color, se observa que los valores mas altos de y, se concentran en la
region inferior izquierda del area, correspondientes a un valor de de /v, ~ 1, mientras que
hacia la parte superior derecha, cuando p/v, < 1 0 u/v, > 1, el Yukawa disminuye, siendo
consistente con la dependencia inversa y, o j1/v,.

4.4.3. Espacio de acoplamientos )\;

A partir de la ecuacién 4.42 y considerando la condicion 4.45, es posible determinar valores
para Ay si fijamos un rango para m; tal que,

1077% GeV < m; < 107° GeV. (4.53)
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Figura 4.5: Espacio [m,w, Aj]

Tal rango, se escogi6 con el fin de que el Majorén pueda ser un candidato de materia oscura
estable, para que al desintegrarse pudiese ser visto en observatorios de rayos x. Por lo tanto,
se llega a los rangos mostrados en la tabla 4.5, en los cuales habitaran nuestros parametros.

Tabla 4.5: Rangos de m;, A; y w.

Parametro Minimo Méximo
w 1.43 x 1072 | 8.53 x 1071
my 3.16 x 107% | 9.99 x 10~°
g 1.40 x 107 | 1.07 x 10~

Anilisis del espacio [w,m  ,\/]

En la figura 4.5 se presenta el espacio permitido en el plano (w,m;) coloreado por el
valor de log,q As. Se puede observar que los valores 1073% < \; < 1072° son muy pequenos
debido a la ecuacion 4.42 y al rango en el cual definimos que estd m ;. El grafico muestra un
area esencialmente rectangular con gran densidad, la forma rectangular muestra ausencia de
correlaciones entre m; y w, lo que confirma que dentro del rango elegido para el majorén, los
filtros no generan restricciones que relacionen estos pardmetros, sin embargo, estos parametros
si regulan el valor de \;, pues existe un patron de color muy marcado.

La distribucién de color muestra un patrén tal que, los valores mas pequenos de \; (regién
violeta), se concentran en la parte izquierda del gréafico, donde w es pequeno, a medida que
aumenta w, el parametro \; crece, alcanzando sus valores maximos en la regién derecha
de color amarillo. Este comportamiento es consecuencia de la relaciéon A; o wm?- que sale
precisamente de la ecuacién 4.42. Debido a que m varia relativamente poco por la condicion
que se propuso, el parametro dominante es w el cual varia enormemente entre varios ordenes
de magnitud.

Todo esto explica la transicion continua horizontal del color purpura hasta el amarillo a lo
largo de la figura.
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Espacio: [w, AMs, As]
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Figura 4.6: Espacio [w, AM;, As]

Por otro lado, es posible obtener valores numéricos para las masas de los escalares 4.39
y 4.40, esto al dar rangos de valores aceptables para Ag, Ay, Aps, Ane ¥ A5, que cumplan las
condiciones de perturbatividad 4.45 y 4.46. Por lo tanto, se proponen los siguientes rangos,

10°%<)N<1 (4.54)
+1071% < Ay < £107° (4.55)
+1071 < Ny, < £107° (4.56)

+107% < A5 < 10" (4.57)

Noétese que, los valores de A\,s y Apz deben ser muy cercanos a cero, pues de esta forma, se
puede obtener el valor de la masa del Higgs sin desviaciones muy grandes, esto se deduce al
observar la ecuacién de Tadpole para la masa del Higgs 4.15.

Por otro lado, el término A5 no tiene tal restriccion, por lo cual es posible ampliar su rango
de valores. Por lo tanto, teniendo en consideracién las restricciones mencionadas, nuestras
variables quedan acotadas dentro de los siguientes rangos mostrados en la tabla 4.6. Al

Tabla 4.6: Rangos de acoplamientos del potencial escalar

Acoplamiento Minimo Maximo Minimo abs | Maximo abs
Ahs —6.77 x 107° | 1.00 x 107> | 1.00 x 107 | 9.98 x 10~°
Az —1.00 x 107> | 1.00 x 107 | 1.00 x 107 | 9.98 x 10~°
As 1.00 x 107 {9.99 x 1071 | 1.00 x 107¢ | 9.99 x 10~*
Ao 1.00 x 107 [ 9.99 x 1071 | 1.00 x 107¢ | 9.99 x 10~*
A5 —3.53 x 1072 | 1.00 x 10° | 1.00 x 107% | 1.00 x 10°
m?2, [GeV?| 1.57 x 10* 2.87 x 10* | 1.57 x 10* | 2.87 x 10%°
m?2, [GeV?] 1.56 x 10% 2.87 x 10 | 1.56 x 10* | 2.87 x 10'°

2 2

comparar las ecuaciones 4.39 y 4.40 podemos notar que al restar m;, —mg, se obtiene el

término P,

1
P=viwB con B= VI6XE + (Aay — Ay )2? (4.58)
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el cual hace diferir los valores de las masas escalares.

Espacio [w, AM;, \s]

A partir de las ecuaciones 4.39 y 4.40, es posible obtener expresiones para las masas
escalares,

1
My = 50U V2 a1 — W(=As1w + Ag1w + B) (4.59)

1
Mgy = 503 \/2)\31 + w(As1w — A\jiw + B) (4.60)

Por lo tanto, podemos definir la variable AM; = m,, —my,, con la cual es posible acceder a una
figura que relacione los parametros AM,, w y 5. La figura 4.6 representa el espacio permitido
en el plano (w, AM;) coloreado por el acoplamiento log,,|As|. A partir de la definicién de P
en la ecuacién 4.58, utilizando la identidad notable de diferencia de cuadrados, se llega a la

ecuacion 4.61,
P

AMy=———— (4.61)
Mg, + Mg,
por lo tanto, AM, o P lo que implica por extension que AM, depende principalmente del
parametro w. la figura 4.6 muestra una forma ovalada similar a una pildora debido a la
estructura del parametro B.
Dicha forma es en gran parte formada por el parametro B, cuando w toma valores muy
bajos, el término dominante de la ecuacién 4.58 es A2, por lo que,

B~ 4| 51| AM ox w|As] (4.62)

En tal régimen, AM, crece practicamente de manera lineal, mientras que para valores de w
cercanos a la unidad, el término de la ecuacién 4.58,(As1 — A\z1)?w? toma relevancia, lo que
implica que,

B = [As1 — Apilw, AM, x w? (4.63)

Lo que permite tener una dependencia cuadratica de w que se traduce en una figura curva.
Por lo tanto, la combinaciéon de ambos comportamientos para los valores de w muestran una
figura ovalada como se puede observar en el grafico 4.6. A partir de la ecuacion 4.33, se puede
observar que As; = A5 pues el término \; al ser extremadamente pequeno, vuelve irrelevante
la dependencia con w del pardmetro \s5;. El gradiente de color, muestra que valores pequenos
de |As1] asociados a valores morados producen valores reducidos de B, lo que fuerza AM; a
situarse en regiones inferiores.

Por otro lado, valores grandes de |A5| asociados al color amarillo, producen amplificados
de B, lo que implica tener valores mayores de AM,.
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Capitulo 5

Conclusiones y Trabajo futuro

5.1. Conclusiones

En este trabajo se estudié un modelo SI con ruptura esponténea de la simetria U(1),,
con el objetivo principal de evaluar si esta extension minima del ME es capaz de generar
un término de masa para un neutrino activo, y a su vez, producir un pseudo-escalar como
candidato a materia oscura.

A partir de las simetrias del modelo, se construye el lagrangiano del modelo y el potencial
escalar. Lo que nos permitié construir las matrices de masa para los campos introducidos.
Esto permitié obtener expresiones algebraicas para los autoestados de masa de los escalares y
pseudo-escalares.

Eventualmente, con el fin de analizar sus comportamientos en funcién de los distintos
pardmetros involucrados, se realizé un muestreo aleatorio de 10° puntos sujetos a restricciones
fisicas plausibles, tales como, la masa del neutrino, la masa del neutrino pesado, la masa del
Higgs, estabilidad del potencial y limites perturbativos: para acoplamientos y para relacion
de parametros con diferencias en ordenes de magnitud.

Los resultados muestran que el modelo es valido para reproducir la jerarquia de masa del
mecanismo SI, lo que nos permite obtener un término de masa para un neutrino activo del
ME.

El anélisis del gréfico 4.1 muestra la correlacién existente entre las masas del modelo SI
[mp, p, M|, donde se llega a un patrén triangular bien definido. Ademés, el tamano de dicha
figura depende explicitamente de la restriccién dada por la masa del neutrino pesado, como
se observa al comparar las figuras 4.1 y 4.2.

Ademas, al observar las correlaciones entre my, w = v, /vs y Ay presentes en el grafico
4.5. Se observa que no existen correlaciones claras entre m; y w debido al patron rectangular
marcado de la figura, no obstante, existe una correlacién clara entre w y Ay, que se ve reflejada
por el gradiente de color caracteristico de la figura.

Por otro lado, fue posible hallar correlaciones claras entre las diferencias de masa de
los escalares fisicos AMg = (mg, — ms,), w vy As. Esto fue posible al definir la variable
P = (m?, —m2)) y ver su relacién con AM,. Lo que nos permitié entender la razén por la
cual la figura 4.6, obtiene una forma ovalada tipo pildora con un gradiente de color marcado
por el acoplamiento A\5. Ademas, el andlisis de los graficos muestra correlaciones claras entre
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los Yukawas (yp, Ys, ¥z), los VEVs (vs,v,) y las masas del SI (mp, M, i), lo que se representa
mediante patrones triangulares y rectangulares, con limites debido a cotas de perturbatividad
entre los Yukawas y limites de masas méaximos impuestos en el modelo.

También, Debido a la restriccién impuesta de la masa del pseudo-escalar majorén 107°° <
m; < 107° GeV, el modelo es capaz de manera natural ofrecer un candidato viable para
materia oscura, que pudiese ser visto de manera observacional, esto mediante observatorios
de rayos X.

5.2. Trabajo Futuro

A pesar de la coherencia interna del modelo, existen ciertas limitaciones que podrian
trabajarse en una investigacion futura tales como:

= En el modelo se consider6 solo un neutrino activo activo que adquirié masa, cuando
sabemos mediante las observaciones, que existen tres neutrinos activos. Esto se podria
trabajar si anadimos méas neutrinos diestros al modelo.

= Es posible analizar los posibles canales de decaimiento para el majorén, para ratificar
de manera mas precisa si funciona como candidato a materia oscura.

» La ruptura espontdnea de la simetria global U(1), deja consigo un bosén de Nambii-
Goldstone, por este hecho, es posible imponer que la simetria sea local, lo que permitiria
introducir un nuevo campo vectorial que pudiese estudiarse como candidato a materia
oscura también.

» Las figuras pueden tener formas aiin mas definidas al considerar una mayor cantidad de
muestras aleatorias.
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Anexo

5.3. Matrices de Gell-Mann:

010 0 —i 0 1 0 0

M=1 0], MN=|i 0 0], NM=(0 -1 0], (5.1)
000 0 0 0 0 0 0
00 1 00 —i 000

XM=100 0], MN=[00 0], N=(0oo0 1], (5.2)
1 00 i 00 010
00 0 L (100

MN=1[00 —i], S——101 0 (5.3)
0 i 0 V3l 0 —2

5.4. Constantes de estructura:

f123 — 1’ f147 — f246 — f257 — f345 — f516 — f637 — %’ f458 — f678 — \/7§ (54)

5.5. Transformacién SO(2)

SO(2) consiste en todas las matrices ortogonales 2 x 2 con determinante 1. Una transfor-
macién en SO(2) tiene la forma,

R(6) = ( cos Sine) (5.5)

—sin@ cosf

y se entiende como una rotacién en dos dimensiones.|[1]
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5.6. Lagrangiano Ly

3
= =303 [0 0k et + Qg0 | - 3 [, 000 e e
ij=1

i,j=1 a=1
(5.6)
Donde la suma 4, j recorre las tres generaciones de fermiones, la suma « recorre los tres colores
(para los quarks).

5.7. Valores de 9, y 1,

Los valores de 1, 1, se determinan con el fin de tener una matriz de masa diagonalizada,
por lo tanto se puede llegar a las expresiones analiticas mediante Mathematica 5.8.

. 2Aw 2Aw
[)\hs \/2 V1602, +A202 + Ana W \/2 + V16X2, +A202 ]
—2Xq + w(Aw +/16)2, + A2w2>

_ _ 28w 20w
b = 2Aha @ \/2 i ane 2Ans \/2 T o 1 (5:8)

21 + w(—Aw + /1602, + Aw)

5.8. Valor del parametro A

Producto de la diagonalizacion de la matriz del sector escalar, se obtiene que la masa del
boson de Higgs es proporcional a una combinacion de los distintos parametros de interaccion
anadidos al modelo, si aislamos el factor vi\,/2 correspondientes al valor de la masa del
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Higgs en el ME, se obtiene que:

. 8AZ A1 N 203
N A (=82 w2 + 20 (A1 + (As1 — As1)w?))  —8A2 w2 + 201 (A1 + (As1 — Ap1)w?)
8)\§1w2 B 8)\51)\}218(,02
—8)\§1w2 + 2/\31 (/\51 + ()\51 - )\zl)uﬂ) /\h (—8/\§1w2 + 2)\51 ()\51 + (/\51 — )\$1>w2))
_ 3251 Aps Apa? . 2X51 As1w?
)\h (—8)\§1w2 —f- 2/\31 (/\31 —|— ()\51 — )\zl)uﬂ)) —8/\§1w2 —|— 2)\51 ()\51 + (/\51 — /\:01)(,02)
8AZ Agw? 8N A\p1w?

- +
)\h (—8)\§1w2 + 2/\31 (/\31 + ()\51 - )\zl)uﬂ)) /\h (—8/\§1w2 + 2)\51 ()\51 + (/\51 - )\x1>w2))

_ 2)\51)\3310(}2
—8)%1&}2 + 2/\31 (/\51 + ()\51 — )\xl)uﬂ)

(5.9)
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